
UNCLASSIFIED

JADS Special Report
on

High Level Architecture

by: Maj Darrell L. Wright, USAF and
Jerry Black, SAIC

January 2000

Distribution A- Approved for public
release; distribution is unlimited.

UNCLASSIFIED

i

Table of Contents

Executive Summary ...1

1.0 Purpose ...3
2.0 High Level Architecture ...3

2.1 HLA Overview ..4
2.2 Implications of HLA..6

3.0 JADS Overview..7
4.0 JADS EW Test ...8

4.1 EW Test Description ...8
4.2 EW Test Requirements..8
4.3 Network and Hardware Description ..9
4.4 JADS EW Test Federation ..11

5.0 RTI Performance Tests ...12
5.1 Pre-Phase 2 Test Objective..12
5.2 Test Software...13
5.3 One-Way Test..14

5.3.1 Description ..14
5.3.2 One-Way Test Results ...14

5.4 Multiple Federate Test...16
5.4.1 Description ..16
5.4.2 Multiple Federate Test Results ..16

6.0 RTI Performance During the JADS EW Test ...17
7.0 Technical Lessons Learned...18

7.1 No Plug-and-Play for High Performance Federations ...18
7.2 Data Packet Size ..18
7.3 Network Architecture ..18
7.4 TCP Implementation..18
7.5 Single Processor Computers ..19
7.6 Process Sleep...19
7.7 Data Collection..19

8.0 Runtime Infrastructure ..20
8.1 Tick..20
8.2 Attribute/Interaction Structures ...21
8.3 Reliable Data and Network Bandwidth ...22
8.4 Multicast Groups ...23
8.5 RTI.rid File Parameters ...23
8.6 Federate Join, Publish, and Resign ..24

9.0 Anomalies from Previous RTI Versions ...24
9.1 Reliable Message Buffering...24
9.2 Multicast Time To Live...25
9.3 Excessive Best Effort Data Loss..25

10.0 Unexplained Anomalies..26
10.1 Best Effort High Latency...26
10.2 Latency Spikes...26
10.3 Differential Latency...27
10.4 Reliable Data Loss...27

11.0 HLA Application to Other Types of T&E ..27
11.1 HLA Application to the End-to-End Test and Legacy Simulations...27

11.1.1 RTI Object Declaration Tests..29
11.2 HLA Application to the System Integration Test...30
11.3 General Utility of HLA to T&E...31

ii

12.0 T&E HLA Requirements ..31
12.1 HLA Rules...33
12.2 HLA Interface Specification..33
12.3 RTI Services ..33
12.4 RTI Performance ...34
12.5 HLA Support Tools ...34

12.5.1 Object Model Development Tool..35
12.5.2 Federation Execution Planner's Workbook ..35
12.5.3 RTI Initialization Data Editor..36

12.6 Verification and Validation ...36
13.0 Summary...36

Appendices

Appendix A - HLA Terms ...39
Appendix B - DoD HLA Directive ..53
Appendix C – Acronyms and Definitions ..55

List of Figures

Figure 1. JADS EW Test Phase 2 Test Architecture and Federates ...10
Figure 2. RTI Interface Logger...20
Figure 3. Latency 101 Bytes at 20 Hz...25
Figure 4. RTI 1.3r5 Reliable Latency Spike Publishing 101 Bytes at 400 Hz..26

List of Tables

Table 1. Maximum Publish Rates by Federate ...12
Table 2. RTI Best Effort Performance in One-Way Tests ..15
Table 3. RTI Reliable Performance in One-Way Tests ..15
Table 4. RTI 1.3r5 Reliable Maximum Latency...16
Table 5. Multiple Federate Test Results ...17
Table 6. EW Test RTI Performance ...17
Table 7. Time Slice Comparison ..19
Table 8. Tick Comparison ..21
Table 9. Object Declaration Test Results ...29
Table 10. RTI Services Used by JADS Federates ..33

1

Executive Summary

1.0 Purpose

This report describes the Joint Advanced Distributed Simulation (JADS) experience with high
level architecture (HLA), discusses the utility of HLA to the test and evaluation (T&E)
community, and presents the requirements that HLA must meet to reach its full potential for use
in T&E.

2.0 Overview

The Department of Defense (DoD) has always used rapidly evolving information systems
technology to support its needs. Early efforts were sharply focused on training applications and
evolved from the simulation network (SIMNET) program managed by the Advanced Research
Projects Agency (ARPA) and the Army. HLA is the latest step in the effort to enable DoD
simulations to connect with one another in a common virtual environment. Although it is not yet
an approved Institute of Electrical and Electronics Engineers (IEEE) standard (as of the writing
of this report) in 1996 Dr. Paul Kaminski, Undersecretary of Defense (Acquisition and
Technology), directed DoD to make all simulations HLA compliant (Appendix B). HLA
consists of an interface specification, implementation rules, and tools to help users create
synthetic environments in which live, virtual, and constructive (synthetic) players can interact.
The centerpiece of HLA is the runtime infrastructure (RTI) which is a distributed software
application that handles all the simulation to simulation communication.

The JADS Joint Test and Evaluation (JT&E) program is an Office of the Secretary of Defense
(OSD)-sponsored joint service effort designed to determine how well an emerging technology,
advanced distributed simulation (ADS), can support test and evaluation activities. Because of
widespread interest in using synthetic environments (and the technology and standards needed to
create them) to support test and evaluation, the Air Force Operational Test and Evaluation Center
(AFOTEC) felt that a JT&E program could serve as an exploratory vehicle. JADS was tasked to
investigate the utility of ADS, including distributed interactive simulation (DIS) and HLA, for
T&E; to identify the critical concerns, constraints, and methodologies when using ADS for T&E;
and finally, to identify the requirements that must be introduced in ADS systems if they are to
support a more complete T&E capability in the future

JADS investigated ADS applications in three slices of the T&E spectrum: the System Integration
Test (SIT) explored ADS support of air-to-air missile testing; the End-to-End (ETE) Test
investigated ADS support for command, control, communications, computers, intelligence,
surveillance and reconnaissance (C4ISR) testing; and the Electronic Warfare (EW) Test
examined ADS support for EW testing. The JADS Joint Test Force (JTF) was also chartered to
observe or to participate at a modest level in ADS activities sponsored and conducted by other
agencies in an effort to broaden conclusions developed in the three dedicated test areas.

2

The JADS EW Test used HLA to link manned threat simulators with a geographically separated
self-protection jammer. The JADS partnership with Defense Modeling and Simulation
Organization (DMSO) made the effort successful. JADS experiences with DMSO in building
the EW Test architecture and in executing the test events form the basis of this report.
Additional insight has come from JADS participation in the HLA Architecture Management
Group and in several modeling and simulation symposia and workshops.

3.0 Key Findings

The JADS EW Test team successfully implemented HLA as part of its distributed test events.
RTI performance met JADS requirements. Even though JADS experienced and solved a number
of problems and even though HLA is still maturing, it is ready to be used in T&E.

HLA has utility for T&E. It is an enabling technology for distributed testing. As more
simulations become HLA compliant, they become resources to the test designer looking to create
a richer, more realistic synthetic environment for testing. However, as noted above, HLA is still
maturing. As it matures, T&E must remain involved to ensure HLA continues to meet T&E
needs and preferences. For example, T&E will favor RTI performance over adding more RTI
services, while other communities may be willing to lose performance in exchange for more
services. All communities will demand well-documented, high quality RTIs. However, high
quality for the T&E community means more than “bug” free. T&E will also want RTIs with
stable, nearly deterministic performance. T&E will find HLA more useful as it becomes more
widely accepted and implemented by the modeling and simulation community at large. More
HLA-based models and simulations should provide the test designer with ready resources to
create richer, more realistic synthetic environments for testing. Emerging requirements for new
HLA capabilities from diverse modeling and simulation communities should also be evaluated
from the T&E perspective. The T&E community needs to become more educated and remain
involved in HLA to ensure that HLA remains useful.

3

1.0 Purpose

This report describes the Joint Advanced Distributed Simulation (JADS) experience with high
level architecture (HLA), discusses the utility of HLA to the test and evaluation (T&E)
community, and presents the requirements that HLA must meet to reach its full potential for use
in T&E.

2.0 High Level Architecture

The Department of Defense (DoD) has always used rapidly evolving information systems
technology to support its needs. Early efforts were sharply focused on training applications and
evolved from the simulation network (SIMNET) program managed by the Advanced Research
Projects Agency (ARPA) and the Army. Conceptually, the early projects were directed toward
linking training simulators with human operators at distributed geographical sites and in a
common virtual environment. The players interacted with one another in this common
environment in near real time. Over the years SIMNET has evolved into a technology
implementation which is more flexible and robust and includes different types of simulators with
different levels of fidelity. The capabilities spawned by the SIMNET evolution are now called
distributed interactive simulation (DIS) and are documented in Institute of Electrical and
Electronics Engineers (IEEE) Standard 1278. The high level architecture is the latest step in the
effort to enable DoD simulations to connect with one another in a common virtual environment.
Although it is not yet an approved IEEE standard (as of the writing of this report) in 1996 Dr.
Paul Kaminski, Undersecretary of Defense (Acquisition and Technology), directed DoD to make
all simulations HLA compliant (Appendix B). HLA consists of an interface specification,
implementation rules, and tools to help users create synthetic environments in which live, virtual,
and constructive (synthetic) players can interact. The centerpiece of HLA is the runtime
infrastructure (RTI) which is a distributed software application that handles all the simulation to
simulation communication.

HLA differs from its predecessors in several key aspects. It is based on object-oriented design
concepts. The terminology, recommended design processes, programming language of choice
(C++), and tools of HLA borrow heavily from this software design methodology. However,
while the architecture uses the terminology, it does not completely implement all the concepts of
object-oriented design. Those unfamiliar with object-oriented design can be easily lost in the
jargon and design approach. Those very familiar with object-oriented design may assume more
capabilities than are actually implemented. We highly recommend attending Defense Modeling
and Simulation Organization (DMSO)-sponsored training to become familiar with the terms,
concepts and specifics of the implementation. The remainder of this report is written using HLA
terms. The following paragraphs are a brief description of the key concepts and terms used in
HLA. We have also compiled a list of common HLA terms with their definitions (Appendix A).

4

2.1 HLA Overview

This section was developed directly from a presentation made by Dr. Judith Dahmann, DMSO, at
the Spring 1997 Simulation Interoperability Workshop. The entire presentation can be
downloaded from the Simulation Interoperability Standards Organization (SISO) Web page at
http://siso.sc.ist.ucf.edu/.

HLA was created in response to shortfalls in its predecessors, DIS and aggregate level simulation
protocol (ALSP). DIS allows users to create a synthetic environment within which humans may
interact through simulation(s) at multiple sites networked using compliant (IEEE Standard 1278-
1, 1278-1A, and 1278-2) architecture, protocols, standards, and databases. DIS was created to
meet the needs of the real-time, platform-level niche of the modeling and simulation (M&S)
market. DIS used fixed message structures and messages were broadcast to all players. On the
other hand, ALSP was created to meet the needs of the discrete-event, logical-time niche of the
M&S market. It was designed to accommodate legacy simulations. Both DIS and ALSP were
limited and neither provided a single technical architecture for distributed M&S. HLA was
created to answer the needs of both the DIS and ALSP communities as well as provide a bridge
for each by being the single technical architecture.

HLA was built on the following premises.

• No single monolithic simulation can satisfy the needs of all users.
• All uses of simulations and useful ways of combining them cannot be anticipated in advance.
• Future technological capabilities and a variety of operating configurations must be

accommodated.

As a result, HLA was created to allow simulations, live entity surrogates, viewers, and data
collectors to interact with one another by separating the functionality of each from the general
purpose supporting runtime infrastructure. (In HLA terms, each simulation, live entity surrogate,
viewer, data collector is called a federate. A federation is a named set of interacting federates.)
In order to interact, the federation of simulations has to have a common understanding of player
relationships and interface. HLA provides both. The architecture specifies the following.

• Ten basic rules that define the responsibilities and relationships among the components of the
federation.

• An object model template that specifies the form in which simulation elements are described.
• A runtime interface specification that describes the ways that simulations interact during an

operation. (This specification allows the simulations to interface with software called the
runtime infrastructure. The RTI is essentially a distributed application that provides the
simulation to simulation communications, provides time management services, and performs
other federation control functions. Each simulation deals with a local RTI instance.)

5

HLA is really a standard that does not mandate a specific software implementation. (This is an
important concept that will get explored later.) The rules are a high-level articulation of
responsibilities of each federate.
1. Federations shall have an HLA federation object model (FOM) documented in accordance

with the HLA Object Model Template (OMT). (A FOM is similar to a software interface
specification.)

2. In a federation, all object representations shall be in the federates, not in the RTI.
3. During a federation execution, all exchange of FOM data among federates shall occur via the

RTI.
4. During a federation execution, federates shall interact with the RTI in accordance with the

HLA interface specification.
5. During a federation execution, an attribute of an instance of an object shall be owned by only

one federate at any given time.
6. Federates shall have an HLA simulation object model (SOM) documented in accordance with

the HLA OMT. (This rule requires that each simulation describes the functionality it is able
to provide to a federation in OMT terms. All functions may not be used in any given
federation.)

7. Federates shall be able to update and/or reflect any attributes of objects in their SOM and
send and/or receive any SOM object interactions externally, as specified in their SOM.

8. Federates shall be able to transfer and/or accept ownership of attributes dynamically during a
federation execution, as specified in their SOM.

9. Federates shall be able to vary the conditions (e.g., thresholds) under which they provide
updates of attributes of objects, as specified in their SOM.

10. Federates shall be able to manage local time in a way which will allow them to coordinate
data exchange with other members of a federation. (Simulations in a federation must manage
time so that there appears to be one clock. Internally, a simulation manages time any way it
wishes, as long as it meets its commitments to other simulations in the federation.)

There are two key HLA elements that appear several times in the rules. The first is the OMT.
The OMT provides a standard format for specifying the capabilities and interface requirements of
a federate via a SOM or a federation via a FOM. DMSO provides a tool, the object model
development tool (OMDT), to make it easier for users to create the FOMs and SOMs called for
in the rules. (JADS experience with the OMDT is described in Section 12.5.1.) Simulation
owners who want their simulations to be certified HLA compliant will need to obtain the OMDT
and get acquainted with it as they prepare their SOM.

The second key element is the RTI. As noted above, the RTI is a distributed application that
provides the backplane that allows simulation to simulation communication, provides federation
management services, and when required, time management services. Simulations interface with
the local RTI component. The local RTI components communicate with one another to move the
data around and to perform the management services. The interface specification standardizes
the RTI/simulation interface as well as sets some limits on RTI behaviors. However, the
interface specification does not require any particular software implementation. While DMSO
has created several RTI versions to prove the interface specification, commercial RTI versions

6

will become the norm in the future. Just prior to the creation of this report, the first commercial
RTI version RTI 1.3 Next Generation was certified.

2.2 Implications of HLA

HLA places no requirements on data format or meaning. There are no fixed message structures
replacing the DIS standard. This allows the designer more flexibility in tailoring the messages to
fit the problem at hand and to more easily live within constraints of the network architecture.
However, it increases the complexity of integration. The burden of integration under HLA rests
entirely on the designers of the federation to agree on what objects will be present in the
federation, how the objects will be represented, what federate owns each object, what object
attributes are needed by other objects in the scenario, and what interactions will occur among
objects. Within HLA, the common understanding is captured in the FOM. Another tool, called
the Federation Execution Planner’s Workbook (FEPW), is used to map the objects and data
messages onto the communications/computer hardware elements. Users may find these need to
be augmented to fully capture the complexity of the federation.

HLA provides a common interface to the communications infrastructure. This opens the door for
the simulation to interact with other simulations. The HLA interface specification addresses the
interface between the simulation and the RTI. This allows the simulation designer to treat the
communications with other federates in a more abstract manner by just calling RTI services. The
HLA places no requirements on network protocols or RTI implementation details beyond those
contained in the interface specification currently being considered by IEEE. Likewise, current
RTIs do not interoperate, and there is no requirement in the interface specification to make them
interoperate. This allows room for commercial RTI developers to create better RTIs by applying
the latest technology and network protocols. It also effectively isolates the simulation from the
network protocols. This in turn gives the federation the flexibility to select the RTI that best
satisfies the federation requirements. Simulations that expect to operate within several different
federations need to provide an interface that allows different FOMs and their associated message
structures to be changed out with minimal changes to the simulation. This is sometimes referred
to as a flexible interface.

The interface specification allows two different levels of message delivery service: best effort
and reliable. Current RTI implementations use user datagram protocol (UDP) multicast for best
effort and transmission control protocol (TCP)/Internet protocol (IP) for reliable. While these are
standard protocols, implementation in operating systems and communications hardware varies.
This ultimately impacts the performance of the HLA federation and sets the limits on message
throughput and latency. Attempts to reduce latency or improve throughput must address the host
computer operating system, protocol implementation, RTI performance parameter settings, local
area network implementation, and wide area network implementation (if required).

The federates themselves declare what they can provide (publish) to the federation and what they
want from the federation (subscribe). The idea is to have the simulation in the federate deal only
with data it requires or wants. The only guarantee that HLA provides is that the federate won’t
have to deal with unwanted messages. There is a temptation to believe this will save bandwidth.

7

It is up to the RTI developer to decide if filtering will be done before the data are transmitted or
after they are received by the local RTI component.

The initial implementations of the RTI tried to capitalize on an emerging Object Management
Group standard. The Common Object Request Broker Architecture (CORBA) is the Object
Management Group’s answer to the need for interoperability among the rapidly proliferating
number of hardware and software products available today. Simply stated, CORBA allows
applications to communicate with one another no matter where they are located or who has
designed them. (www.omg.org/corba/whatiscorba.html) Even though CORBA was created with
client-server software applications in mind, it has features that make it attractive to use in an RTI.
While current RTI versions have moved away from CORBA, it may well find its way back into
future versions. The use of CORBA may have implications on RTI performance. Federation
designers should not treat the RTI as a black box.

3.0 JADS Overview

The JADS Joint Test and Evaluation (JT&E) program is an Office of the Secretary of Defense
(OSD)-sponsored joint service effort designed to determine how well an emerging technology,
advanced distributed simulation (ADS), can support test and evaluation (T&E) activities.
Because of widespread interest in using synthetic environments (and the technology and
standards needed to create them) to support T&E, the Air Force Operational Test and Evaluation
Center (AFOTEC) felt that a JT&E program could serve as an exploratory vehicle. Both the
developmental and operational test communities shared interest. Accordingly, the JADS JT&E
program was nominated. The services concurred in the need for rigorous examination of the use
of synthetic environment technology and the OSD Deputy Director of Test and Evaluation
chartered JADS as a joint test program in October 1994. JADS was chartered to investigate the
utility of ADS for both developmental test and evaluation (DT&E) and operational test and
evaluation (OT&E). JADS was tasked to investigate the utility of ADS, including DIS and HLA,
for T&E; to identify the critical concerns, constraints, and methodologies when using ADS for
T&E; and finally, to identify the requirements that must be introduced in ADS systems if they are
to support a more complete T&E capability in the future.

JADS investigated ADS applications in three slices of the T&E spectrum: the System Integration
Test (SIT) explored ADS support of air-to-air missile testing; the End-to-End (ETE) Test
investigated ADS support for command, control, communications, computers, intelligence,
surveillance and reconnaissance (C4ISR) testing; and the Electronic Warfare (EW) Test
examined ADS support for EW testing. The JADS Joint Test Force (JTF) was also chartered to
observe or to participate at a modest level in ADS activities sponsored and conducted by other
agencies in an effort to broaden conclusions developed in the three dedicated test areas.

8

4.0 JADS EW Test

4.1 EW Test Description

To determine the utility of ADS technology for EW T&E, JADS used the HLA in two phases of
the three-phased test program. The test phases were designed to allow the direct statistical
comparison of ADS-based test results to results from traditional tests to measure the impact of
ADS. To accomplish this, a reference test condition (RTC) was established and recreated in each
test phase. The RTC defined the aircraft flight profile, the threat engagement zones and rules, the
self-protection jammer (SPJ) pod responses, and the relevant data to be collected. Phase 1 was a
series of traditional tests accomplished on an instrumented open air range (OAR) and in a
hardware-in-the-loop (HITL) facility. In both environments, JADS used similar manned threat
simulators, the same SPJ pod, and the same aircraft flight profiles. The HITL tests used time-
space-position information (TSPI) recorded on the OAR to remove potential sources of variation.
The radio frequency (RF) environment, the threat systems, and the SPJ were all instrumented to
calculate standard EW measures of performance from the data collected. Phase 2 and Phase 3
used HLA to link different representations of the jammer to the HITL facility threats. (Phase 2
used a real-time digital system model while Phase 3 used the actual jammer mounted on an F-16
suspended in an anechoic chamber.) Other elements necessary to recreate the OAR environment
(such as aircraft position and attitude, threat simulator activation/deactivation commands, and
other RF emissions activation/deactivation) were represented by simple federates that played data
recorded in the OAR. These federates were brought together in a federation to gather data to
evaluate the utility of ADS. The federate interactions were monitored, and the measures of
performance were calculated in real time.

Because JADS used HLA in developing the ADS architecture, the key operating component
supporting the JADS test federations was the RTI. JADS also attempted to use the available
tools and recommended processes to determine how well the HLA would support the test and
evaluation community. The direct comparison of traditional and ADS-based test results caused
JADS to instrument the architecture to attempt to isolate where ADS-induced errors might
appear. This resulted in a rigorous examination of the architecture including the RTI.

4.2 EW Test Requirements

The problem space was defined by the RTC used in the OAR test. Closed-loop testing using
ADS technology runs the risk that the communications infrastructure transmitting the data
interchange between objects (federates in this case) will affect the outcome either through lost
interchanges or by altering the temporal nature of the interchange. This temporal change is
usually an increase in the time for the interchange to occur and is called latency. The amount of
allowable latency depends on the nature of the interchanges and the decision cycle of each system
involved. The EW Test interchange of interest was the threat radar activation, jammer
identification and response, and associated threat response.

9

We focused on determining how much latency the jammer/threat interaction could tolerate and
still be a valid test. Depending on how the engagement is carried out, the interaction can be the
jammer’s computer working against the threat’s computer or the jammer’s computer working
against the threat’s human operator. Latency is driven by the decision cycle times of the jammer
computer and either the threat computer or the threat operator. The jammer used in the JADS
test was simple and had a very short decision cycle. Likewise the threat computers had very
short decision cycles. The analysis showed that it was unrealistic to model the computer to
computer interaction. The latency expected from linking the HITL manned threat simulators at
the Air Force Electronic Warfare Evaluation Simulator (AFEWES) in Fort Worth, Texas, to the
jammer representation located at the Air Combat Environment Test and Evaluation Facility
(ACETEF) at Patuxent River, Maryland, was too great to faithfully reproduce the engagements
that normally occur at distances shorter than 50 kilometers (km). In fact, the analysis indicated
that once the wide area network (WAN) communications time, the local area network (LAN)
communications time, and the facility interface processing times for both AFEWES and
ACETEF were accounted for, the acceptable latency for the RTI had to be a negative value. The
decision cycle time for the threat operator was estimated to be 500 milliseconds (ms), which we
believed was an achievable latency objective for JADS. Therefore, the limitation that we placed
on the communication infrastructure latency with human operator interaction was 500 ms. Once
the total latency was identified, the 500 ms were allocated to the communications infrastructure,
facility interfaces, and the RTI. That means that from the time the threat radar changed state, the
infrastructure had no more than 500 ms to get that message to the jammer and then return the
jammer’s response. (The jammer’s decision cycle time or “response time” was not included in
the 500 ms.) We referred to this as an “end-to-end interaction” during the EW Test.

4.3 Network and Hardware Description

The EW Test used dedicated T-1 circuits, communications, and encryption devices to link JADS
with two key EW facilities, AFEWES and ACETEF. Three network nodes interconnected a total
of seven federates. Five federates represented critical components of the OAR test environment
including the test aircraft, aircraft EW systems, and threat systems. Two federates provided a test
control and test analysis capability. The JADS test control facility at Albuquerque, New Mexico,
hosted four of the seven federates executing on dedicated Silicon Graphics, Inc., (SGI) O2 and a
fifth federate executing on a Sun SPARCstation. (The federate hosted on the Sun SPARCstation
was a data logger and visualization tool. It was a late addition into the architecture to reduce risk
in test control and analysis. It only subscribed to data. When it functioned properly, it had no
measurable impact on the federation. It is not in Figure 1, nor is it discussed any further in this
report.) There was one federate executing on an SGI O2 at the ACETEF and one federate
executing on an SGI Challenge at the AFEWES HITL facility. The Phase 2 network architecture
is illustrated in Figure 1.

10

DSM
(Pent. PC)

Router

T1T1

AFEWES

JADS

RTI

Threats

L
o
g
g
e
r

RTI
API

IADS

I/F

RTI
API

A/C
Platform

I/F

V
o
i
c
e

V
o
i
c
e

Router

ACETEF

Voice Voice

Voice Voice

RTI
API

Test
Control I/F

I/F

RTI
API

RF
Env.

I/F

ADRS
(Pent. PC)

T
A

M
S

RTI
API

DSM I/F

I/F

J
E

T
S

Router

T1

LoggerLoggerLogger

Logger

SGI Challenge

Logger

A/C = aircraft ADRS = Automated Data Reduction Software API = application program interface
DSM = digital system model Env = environment I/F = interface
IADS = Integrated Air Defense System JETS = JammEr Techniques Simulator PC = personal computer
Pent = pentium TAMS = Tactical Air Mission Simulator
T-1 = digital carrier used to transmit a formatted digital signal at 1.544 megabits per second

Figure 1. JADS EW Test Phase 2 Test Architecture and Federates

JADS added network sniffers into the Phase 3 architecture to provide more insight into data loss
problems seen in the Phase 2 execution. One sniffer was added at each site in parallel to the
LAN to record all incoming and outgoing WAN message traffic. The data loss problems were
not seen in Phase 3. However, these sniffers allowed us to examine other phenomena and were
essential in discovering the single instance of a reliable message being lost during the Phase 3
data analysis.

RTI time management services were not used. Time synchronization came from an Inter-Range
Instrumentation Group (IRIG) B signal provided at each facility by a local global positioning
system (GPS) receiver. All federate computers had a card installed that could use the IRIG B
signal as a time source. This proved generally acceptable, although we found federates that read
time directly off the card were more accurate than federates that used system time and additional
software to set the system time using the time card as the reference.

JADS message structures and data logging scheme were designed to aid in the analysis of
latency. JADS required each federate to add a time stamp when the message was created. The
data logger JADS created logged all data at the simulation/RTI application interface at each
federate. The logger time stamped and logged each message as it crossed the interface. JADS

11

also required that each message from each object be numbered sequentially by the federate. The
combination of the time stamping at several points in the transmission chain from data
production to data consumption coupled with the synchronized clocks, the unique message
number, and the network sniffers (in Phase 3) allowed JADS to track each message through the
entire network. JADS could also quickly identify any lost messages and pinpoint where the
message was lost.

JADS constructed a WAN test bed to reduce the WAN/LAN/RTI integration risk for Phase 2.
The test bed was located at JADS in Albuquerque, New Mexico. It was constructed from the
WAN hardware prior to activation of the T-1 lines and installation of the WAN hardware at the
two remote sites. After Phase 3 was complete, the network was shut down and the WAN
hardware returned to JADS. JADS reassembled a significant portion of the test bed to examine
other RTI issues. These results are discussed in sections 5, 7, and 9 in this report.

4.4 JADS EW Test Federation

The JADS EW Test federation (the federation) linked seven federates passing attributes and
interactions (messages) within constrained timing tolerances representing EW systems operating
in a live test environment. A federate residing at ACETEF in Patuxent River, Maryland,
represented the jammer. The surface-to-air missiles (threats) were represented by a federate at
the AFEWES facility in Fort Worth, Texas. The AFEWES federate represented two threats
during a normal execution of the JADS EW Test. Two additional threats were represented by the
radio frequency environment (RFENV) federate. Five federates were located in the JADS Test
Control and Analysis Center (TCAC) facility in Albuquerque, New Mexico. The terminal threat
hand-off federate (HANDOFF) cued the threat operators. The test control federate (TCF)
controlled the start/stop of the federation and passed data to the real-time analysis tool
(Automated Data Reduction Software [ADRS]) executing on a personal computer (PC). The
RFENV federate published RF background. The platform federate (PLATFORM) published
aircraft TSPI. The analysis federate subscribed to all data published by the other federates and
provided a real-time display of the engagement.

The federates joined the federation one at a time starting with the federates residing in the TCAC.
As a federate joined, it began publishing link health check (LHC) messages. As soon as all
federates had joined and other equipment was ready, TCF sent a start message to begin the run.
After the start was received, all playback federates began publishing the data in their script.
When a threat detected the aircraft, the AFEWES federate published mode change interactions as
the threat's mode changed. Upon receipt of the mode change, the jammer federate published a
jammer response interaction. At some time during the engagement, the threat fired missiles at
the aircraft, and the AFEWES federate published missile entity state position attributes. After
the run was complete, TCF sent a stop message, all federates resigned and the federation was
destroyed. Each run (start to stop) lasted approximately four minutes. For Phase 2 of the JADS
EW Test, the federates used RTI 1.3 release 4. RTI 1.3 release 5 was used for Phase 3. Table 1
shows the maximum observed messages published per second for each federate.

12

Table 1. Maximum Publish Rates by Federate

Federate Maximum Messages Published (per second)
ACETEF 28
AFEWES 116
HANDOFF 3
PLATFORM 43
RFENV 3
TCF 2

5.0 RTI Performance Tests

The federation development and execution process (FEDEP) recommends integration testing be
accomplished prior to execution. JADS concerns led to the early creation of a test bed comprised
of the actual communications hardware and computers that would be used in the EW Test. This
provided JADS with the capability to test and tune all the components prior to the creation of the
WAN. One of the key elements was the RTI. JADS tested several RTI versions in the test bed
prior to executing Phase 2. These included one version of RTI 1.0; two prerelease versions of
RTI 1.3; and three post-release versions of RTI 1.3; release 3, release 4, and release 5.

During the course of test build-up and execution, JADS learned that the test bed was a unique
capability. After Phase 3 was complete and the WAN equipment was returned, we reassembled
the test bed to examine RTI 1.3 release 6 and two commercial RTIs, RTI 1.3 NG (beta) and a
reduced service RTI (1.3.1b) from Mak Technologies. Since there wasn’t enough time for tuning
the architecture as JADS had done with the earlier RTI versions, JADS ran the RTIs using the
default settings. Users should be able to get somewhat better performance from each by tuning
the architecture. The RTI 1.3 NG (beta) is not the version that DMSO recently certified as
compliant with the 1.3 interface specification. The released RTI 1.3 NG should perform better
than the beta version.

This section discusses the test methods and results of both the pre-Phase 2 and post-Phase 3
testing. Results are presented for RTI 1.3 release 4, release 5, release 6, RTI 1.3 NG beta, and
Mak RTI 1.3.1b.

5.1 Pre-Phase 2 Test Objective

The primary objective of JADS RTI testing was to ensure that the EW Test had an acceptable
communications infrastructure, including the RTI, for each ADS test phase in order to accurately
recreate the critical interactions from the OAR test environment. Acceptable meant that all
hardware and software components were behaving as required and that the total system latency
was within budget over the expected range of message rates and sizes used to recreate the OAR
test event interactions.

13

Prior to Phase 2, JADS conducted RTI tests to satisfy two key requirements.

• Quantitatively measure latency and expected RTI 1.3 software performance prior to JADS
EW Test Phase 2 and Phase 3.

• Provide input to the verification, validation, and accreditation (VV&A) process for JADS
EW Test Phase 2 and Phase 3.

JADS conducted two types of RTI tests to meet these requirements. One-way testing was
conducted to measure raw performance of the RTI between a sender and a receiver. Multiple
federate testing was conducted to predict the performance of the JADS federation.

RTI test results were provided on a regular basis to the DMSO technical support and RTI
software developers.

After JADS completed Phase 3, we had time to briefly examine the performance of the latest RTI
versions. Since we froze our Phase 3 configuration with RTI 1.3 version 5, we had no
experience with several RTI versions. The test bed was to transition to the Foundation Initiative
2010 project, so JADS needed to determine if the tools and test bench could be used to test other
RTIs. There was also interest within the community for JADS to test the latest RTI versions on
the JADS test bed. JADS reassembled the test bed and performed basic tests on RTI 1.3 release
6, RTI 1.3 NG (beta), or the Mak RTI. The results presented in Section 5.3 were gathered after
we completed Phase 3. We had a limited amount of time to collect the data. As a result, only a
single execution of the test matrix was run with each of the RTI versions. The results are
included in this report to illustrate the types of results we obtained. They are not a statistically
significant sample. Where we had data for a particular RTI, we compared our results with our
previous results to provide ourselves confidence that the test bed was operating correctly.

5.2 Test Software

The following is a description of the software tools JADS developed for testing the network
architecture (including the RTI) in 1998. DMSO has since developed its own benchmarking
tools. JADS has no experience with the DMSO tools, so they are not discussed.

There are two types of software JADS developed for the RTI tests -- one-way software (non-RTI
and RTI versions) and runtime configurable test federate software. Using the JADS test bed
configuration, the one-way tests characterized the network and the RTI in the simplest of cases.
The non-RTI tests gave an approximation of the raw network performance. There are three one-
way test tools. The first used IP multicast without the RTI. The second used TCP/IP without the
RTI. The third used the RTI and could be configured for either best effort (IP multicast) or
reliable (TCP/IP). All three tools sent messages from the sender to the receiver. The size and the
frequency of the messages changed until the test matrix was complete. The one-way RTI
software indicated the performance of the RTI and network combined. By comparing the RTI
results with the raw network results, the performance of the RTI could be approximated. By

14

modifying the federation execution data (FED) file, the tests could be executed using reliable
(TCP) or best effort (IP multicast) transmission.

The second type of software developed was runtime configurable test federate software (testfed).
The testfed is an RTI federate capable of running in different configurations on multiple
computers within a federation execution. The purpose of this software was to determine how the
RTI performed in a more realistic environment under loads anticipated for the JADS federations.
The testfed federate accepts command line arguments that specify the characteristics of an
instance of the federate. The user can specify the federate identification (ID) number (-f), the
duration of the test (-d), the size of the attributes and interactions (-s), the rate that attributes are
published (-r), the number of updates at the specified rate (-n), the amount of time the federate
should wait before starting to publish at its specified rate (-w), and whether interactions should
be published (-i). There are only one attribute and one interaction used by all federates. All
federates subscribe to the attribute and the interaction.

5.3 One-Way Test

5.3.1 Description

The one-way tests were designed to exercise a communications link and the RTI with different
data sizes and transmit rates. The sizes varied among 17, 51, 101, 301, 501, and 1001 bytes. The
transmit rate varied among 5, 10, 20, 50, 100, 200, 400, and 500 hertz (Hz). The complete
matrix of rate and size combinations was tested. Each test case, which consisted of a rate and
size pair, ran for two minutes. A separate matrix test was executed for TCP, IP multicast, RTI
reliable, and RTI best effort data.

5.3.2 One-Way Test Results

Table 2 summarizes the performance of IP multicast and RTI best effort transmission during the
one-way tests. In the tests with RTI 1.3r5, 13% of the published packets were lost when
publishing 301 bytes at 400 Hz. The maximum loss (72%) occurred when publishing 1001 bytes
at 500 Hz. These results represent a single pass through the test matrix. The results for RTI
1.3r4 and RTI 1.3r5 were compared with our previous results. The performance results presented
were consistent with our earlier results. These results represent RTI performance in the JADS
test bed. Other architectures will likely produce different results. Federation developers need to
test in their own environment to understand how a particular RTI will perform.

15

Table 2. RTI Best Effort Performance in One-Way Tests

 Max Latency during Runs
Test Type Losses Began With Losses With No Losses

IP Multicast 301 bytes at 500 Hz 147 - 452 ms 7 - 14 ms
RTI 1.3r4 301 bytes at 400 Hz 214 - 512 ms 9 - 17 ms
RTI 1.3r5 301 bytes at 400 Hz 214 - 512 ms 9 - 17 ms
RTI 1.3r6 301 bytes at 400 Hz 511 - 518 ms 14 - 28 ms
RTI 1.3NG beta 17 bytes at 100 Hz 3.3 - 7.2 sec 9 - 22 ms
Mak RTI 1.3.1b 301 bytes at 500 Hz 160 - 460 ms 8 - 17 ms

Table 3 summarizes the performance of TCP and RTI reliable transmission during the one-way
tests. Instrumentation points were the same as in the previous test. The "break point" was where
the receiving federate started experiencing problems, displayed RTI TCP error messages, and
was no longer receiving data. The "good" runs excluded runs when the RTI broke.

Table 3. RTI Reliable Performance in One-Way Tests

Test Type Break Point Latency in Good Runs
TCP 301 bytes at 500 Hz 6 - 13 ms
RTI 1.3r4 301 bytes at 400 Hz 9 - 17 ms
RTI 1.3r5 301 bytes at 400 Hz 9 - 17 ms
RTI 1.3r6 301 bytes at 400 Hz 14 - 19 ms
RTI 1.3 NG beta * 9 - 11 ms
Mak RTI 1.3.1b 17 bytes at 100 Hz 539 - 605 ms
* Never broke but maximum data publish rate achieved was 234 Hz

Since the worst case total load estimated for the JADS EW Test was approximately 100 bytes at
200 Hz, the performance of RTI 1.3r4 (the latest version available at the time of Phase 2) was
considered acceptable for further screening (using the multiple federate test described in Section
5) prior to the JADS EW Test Phase 2. Phase 2 execution was hampered by a data loss problem
and by federate “core dumps.” RTI 1.3r5 was available for use in Phase 3 execution, so JADS
took time to test it. JADS determined that RTI 1.3r5 fixed some of the problems with RTI 1.3r4
and did not introduce any new problems that would adversely affect the JADS tests. Therefore
RTI 1.3r5 was used for Phase 3.

Table 4 shows the maximum latency observed in the one-way reliable tests with RTI 1.3r5.
Unlike the previous data, these results were not obtained in the test bed but on the actual installed
network. These results provide a glimpse into the differences between local test bench results
and those obtained on an actual WAN. As indicated by the data in this table (e.g., 101 bytes at
100 Hz and 101 bytes at 200 Hz), there are other factors besides size and transmit rate that
influence the latency. The items without data are where the RTI broke.

16

Table 4. RTI 1.3r5 Reliable Maximum Latency

Packet Size
Rate 17 51 101 301 501 1001

5 0.039 0.011 0.011 0.012 0.034 0.018
10 0.011 0.010 0.016 0.027 0.014 0.023
20 0.026 0.011 0.011 0.088 0.018 0.018
50 0.085 0.028 0.016 0.014 0.015 0.033

100 0.034 0.016 0.150 0.020 0.082 0.123
200 0.021 0.043 0.020 0.042 0.046
400 0.019 0.022 0.127
500 0.128 0.216 0.046

5.4 Multiple Federate Test

5.4.1 Description

Once the one-way results were in the reasonable region, the next test used a multiple node,
multiple federate test that was more representative of the Phase 2 federation. JADS simplified
the Phase 2 federation to three federates with each federate representing a single facility. To
simulate the AFEWES federate, we configured testfed on one computer to publish 10 attribute
updates every 50 ms. To simulate the four federates at JADS, we configured another instance of
testfed to publish 2 attribute updates every 50 ms. The ACETEF node was simulated by
configuring testfed to publish 1 attribute update every 50 ms. All three federates published
interactions at approximately 2 Hz. The size of attributes and interactions was 121 bytes.
Attributes were published best effort. Interactions were published reliable. The test duration was
five minutes. Fifteen runs were made in this configuration.

5.4.2 Multiple Federate Test Results

The results of the multiple federate tests with RTI 1.3r5 are shown in Table 5. The JADS
federate was the only one that experienced attribute and interaction losses. Upon further
examination of the data, it was discovered that all the losses occurred at the start of the run. The
ACETEF and AFEWES federates were started first. The JADS federate was configured as the
controller federate. This means it sent the start interaction to begin the test. While the ACETEF
and AFEWES federates were waiting for the start they published dummy data at 1 Hz. There
was no wait interval specified for the JADS federate. So as soon as it was started, it began
publishing at 20 Hz. The actual start-up sequence used in Phase 2 and Phase 3 avoided this
problem. While we had seen this problem in integration testing, these data illustrate the impact
of publishing data immediately after start-up at a rate faster than 1 Hz. JADS documented
problems with data loss at the start of runs when federates begin publishing immediately.

17

Table 5. Multiple Federate Test Results

Federate Name ACETEF AFEWES JADS
Attributes Published (per sec) 20 200 40
Interactions Published (per sec) 2 2 2
Attributes Received (per second) 240 60 220
Attributes Lost 0 0 22 - 44
Attribute Maximum Latency 127 114 100
Attribute Mean Latency 20 17 20
Interaction Maximum Latency 97 41 38
Interaction Mean Latency 22 19 22

6.0 RTI Performance During the JADS EW Test

Table 6 shows performance data of the RTI during the JADS EW Test. Federate problems that
caused a run to be aborted included the crash of one or more federates and lost TSPI data from
the platform federate. Procedure problems were usually due to the loading of an incorrect script.
The yield of usable runs was higher for Phase 3 (88% versus 72%) indicating that RTI 1.3r5 was
more stable than 1.3r4.

As mentioned earlier, the acceptable end-to-end latency (from radar mode change to jammer
response) was determined to be 500 ms. Any runs with an end-to-end latency greater than 500
ms were considered bad. The Phase 3 tests (using RTI 1.3r5) had only one bad run (589 ms for
the end-to-end latency). The maximum latency for the good runs was 10% higher for Phase 3
(417 ms versus 380 ms). However, the mean value for Phase 3 was 35% lower than Phase 2
(167 ms versus 255 ms) once again indicating that the later release had better performance.

Table 6. EW Test RTI Performance

Phase 2 Phase 3
RTI Version 1.3r4 1.3r5
Total runs (excluding excursions) 341 255
Runs aborted due to federate problems 83 20
 due to procedure problems 10 10
 due to network problems 2 1
Usable runs (total - aborted) 246 224
Runs with unacceptable latency (bad runs) 8 1
Good runs (usable - bad) 238 223
Maximum latency in bad runs (ms) 12352 589
Latency in good runs (ms)
 minimum 114 113
 mean 255 167
 maximum 380 417

18

7.0 Technical Lessons Learned

7.1 No Plug-and-Play for High Performance Federations

RTI 1.3r4 (used in Phase 2) and RTI 1.3r5 (used in Phase 3) were adequate for the JADS tests.
However, we determined the JADS EW Test performance requirements early in the test
development process. We tested many versions of the RTI within the context of these
requirements. We started RTI testing well in advance of our actual tests (about one year). We
found problems with the RTI, but we had plenty of time to have the problems fixed or
experiment and develop a workaround for them. If you have specific performance requirements
for your federation, you may be able to achieve them. However, it will take some work. Before
your performance requirements are met, plan on spending some time experimenting with runtime
infrastructure initialization data (RID) parameters, your federate implementation, tick, and other
options in your architecture.

7.2 Data Packet Size

The largest JADS message (attribute or interaction) was 94 bytes. However, by the time the
message reached the network, the size of the message was 298 bytes. This additional overhead
came from the Ethernet header and checksum, the IP header, the UDP header, and the RTI. The
RTI contribution to this overhead was approximately 70 bytes.

7.3 Network Architecture

The JADS EW Test network was initially configured using an unswitched, half duplex, 10BaseT
LAN. JADS RTI tests occasionally had reliable latency values of more than one second. The
cause of these high latency spikes has been traced to excessive Ethernet collisions. A switched,
full duplex, 100BaseTX LAN network was installed and the number of Ethernet collisions
dropped to zero. The one-second latency spikes were eliminated. The JADS EW Test might not
have been successful if it had been executed using the unswitched, half-duplex configuration of
the network.

7.4 TCP Implementation

RTI reliable traffic is published using transmission control protocol (TCP). TCP
implementations vary from operating system to operating system. The algorithms used to
retransmit corrupted or lost packets (e.g., due to Ethernet collisions) can add significant latency
(more than one second). The JADS EW Test was able to avoid this problem by configuring the
network as a switched (versus a shared) Ethernet. Some TCP implementations (e.g., IRIX 6.3)
use the Nagle algorithm to reduce network traffic. This algorithm causes the TCP
implementation to hold a message for up to 200 ms in the event that an acknowledge or other
message can be sent in the same network packet. To minimize latency, a federation with
additional TCP connections (other than those created by the RTI) may want to disable the Nagle

19

algorithm by setting the TCP_NODELAY socket option. The RTI disables the Nagle algorithm,
but it provides options in the RTI.rid file to perform bundling if desired.

7.5 Single Processor Computers

Single processor computers are more difficult to use in high performance federations. The single
processor is a resource that has to support the operating system, the simulation software, the RTI
local component, and any other software (e.g., the JADS logger) or hardware (e.g., a time card).
Two factors in making all this work are the arguments supplied to the RTI tick service that
allocates processor time to the RTI and the size of the operating systems time slice that is the
minimum amount of time the operating system will allocate to an executing process. JADS
found that, in some cases, the size of the operating system’s process scheduling time slice could
affect latency. However, this only affected federates executing on single processor computers.
The default time slice on SGI computers (defined by the kernel parameter slice_size) was 30 ms.
Table 7 shows the results of a simple one-way test between two computers on the same LAN
using the zero-argument form of the RTI tick service comparing time slices of 10 ms and 30 ms.

Table 7. Time Slice Comparison

Time Slice Size 30 ms 10 ms
Minimum Latency 14 ms 6 ms
Maximum Latency 110 ms 56 ms
Mean Latency 34 ms 25 ms
Max Time in Tick (sender) 113 ms 13 ms
Max Time in Tick (receiver) 98 ms 42 ms

When a federate is executed on a single processor machine, other software running on that
machine can increase latency of data to and from the federate. Graphics updates in particular can
severely impact latency. The JADS team noticed that a graphical screen saver caused latency
spikes in the hundreds of milliseconds. High latency spikes were also caused by network file
transfers and remote logins.

7.6 Process Sleep

Since the federate and the RTI are single threaded, care must be taken when using sleep (or other
variant such as sginap) within the federate. If the federate sleeps, the local RTI component
(LRC) is also sleeping. While a federate (and its LRC) sleeps, it is possible for the entire
federation to be waiting.

7.7 Data Collection

The HLA provides a flexible environment for linking simulations for distributed tests.
Federations are free to define the format of messages exchanged among federates via the FOM
and SOM. However, this flexibility complicates data collection. Since there was not a protocol

20

for data exchange (as in DIS protocol data units), a stealth logger that recognized and recorded all
simulation traffic in a log file could no longer be connected to the network.

The JADS EW Test team chose to implement an RTI interface logger for data collection. An
interface logger resided between the federate software and the application program interface
(API) to the RTI (Figure 2).

R T I
A P I

L
O
G
G
E
R

F
E
D
E
R
A
T
E

R T I
A P I

L
O
G
G
E
R

F
E
D
E
R
A
T
E

Figure 2. RTI Interface Logger

An interface logger was chosen to accurately determine federate to federate message latency.
Using an interface logger, messages were time stamped as they were sent to the RTI at one
federate and when they were received from the RTI at another federate. Every message header
also contained the data creation time.

8.0 Runtime Infrastructure

8.1 Tick

The RTI software is single threaded. A federate must call the tick method to yield time to the
RTI. The tick method exists in two forms – one taking zero arguments [tick()] and another
taking two arguments [tick(minimum, maximum)]. The zero-argument version yields time to
each major activity within the LRC. A typical activity would be draining inbound event queues
and providing callbacks to the federate via the FederateAmbassador. The two-argument version
of tick also yields time to the LRC but suggests lower and upper bounds on the time being
allotted to tick. If the specified minimum time interval has not elapsed after all available
processing has been done, the LRC will pause until the minimum time interval has elapsed, then
return immediately.

In the zero-argument form of tick, the LRC completes all the work in its queues before it returns
to the federate. This can potentially starve the federate of central processing unit (CPU) cycles.
Using the two-argument form, the LRC will attempt to empty its work queues. However, if the
maximum time is reached before the work is completed, the LRC will return to the federate. If

21

the LRC completes its work before the minimum time has elapsed, it will attempt to use up the
remainder of the time before returning to the federate thread. It does this by blocking the
process. The LRC becomes unblocked and returns to the federate thread after the minimum time
has expired. The LRC will process any incoming messages while the process is blocked.

In JADS RTI performance tests, it was noticed that the zero-argument form would occasionally
have high latency spikes. Latency results comparing the two forms of tick in a simple one-way
test are shown in Table 8. For this test, one federate published only reliable attributes and
interactions and the other federate only subscribed. The default slice size of 30 ms was used for
these tests. The latency differences were due to the fact that the federates were executed on
single processor machines. The zero-argument form never blocks the federate/RTI process.
When software executes on a computer with only one processor it must contend with the
operating system. Unless the federate performs input/output or blocks intentionally using some
other method (like sleep), the zero-argument form of tick will not cause the federate and the LRC
to block. The operating system will only wait so long for an opportunity to complete its work
and then it will take control of the processor. The federate will have to wait to regain control of
the processor. This manifests itself as additional latency.

Table 8. Tick Comparison

tick() tick(.010,.020)
Minimum Latency 14 ms 6 ms
Maximum Latency 110 ms 57 ms
Mean Latency 34 ms 30 ms
Max Time in Tick (sender) 113 ms 75 ms
Max Time in Tick (receiver) 98 ms 25 ms

Since most federates in the JADS EW Test federation executed on single processor computers,
the two-argument form of tick was used with a minimum value of 10 ms and a maximum value
of 20 ms. This produced better latency results for the data published by the JADS federates. It
should be noted that occasionally the RTI would use more than the maximum time specified.

As federation developer, you must experiment with tick, number of federates and typical
publication rates. If latency is not an issue or you are executing your federates on multiple
processor computers and the LRC is not starving your federate, you may be able to use the zero-
argument form of tick. This will relieve the federate of the responsibility of determining how
much time to give the LRC. If the federate executes on a single processor computer or the LRC
must deal with a lot of federation activity, you should probably use the two-argument form of
tick.

8.2 Attribute/Interaction Structures

The implementation of attributes and interactions can affect performance. You can define each
piece of data that can be associated with an object as a separate attribute as in the following
excerpt from a FED file.

22

(class Live_Entity_State
(attribute Data_Header best_effort receive)
(attribute Object_Type best_effort receive)
(attribute Object_Velocity best_effort receive)
(attribute Object_Location best_effort receive)
(attribute Object_Orientation best_effort receive)
(attribute Object_Acceleration best_effort receive)

Or you can define a structure that contains all the data and only declare one attribute represented
by the structure as in the following.

(class Aircraft
(attribute Live_Entity_State best_effort receive))

Construct Live_Entity_State
Data_Header header
Object_Type type
Object_Velocity velocity
Object_Location location
Object_Orientation orientation
Object_Linear_Acceleration acceleration

We ran a series of tests comparing the performance of the two methods of declaring attributes. In
one case we declared twenty individual attributes for a test object (similar to the definition of an
entity state object in the real-time platform reference [RPR] FOM) with a total size of 168 bytes.
In another case we declared one attribute for a test object with a size of 168 bytes. We ran
simple one-way tests with each object. There were no performance differences until we started
publishing at 400 Hz. The tests with the individual attributes started experiencing data losses
and high latency in the best effort tests and caused an RTI internal error in the reliable tests when
the data were published at 400 Hz. The tests using the attribute structure did not experience
these problems until data were published at 600 Hz.

8.3 Reliable Data and Network Bandwidth

By default every federate is configured with its own reliable distributor (RELDISTR). When a
federate publishes a reliable message, its RELDISTR transmits the message to every RELDISTR
in the federation. It’s important to note that unless the federation uses data distribution
management (DDM), all reliable messages will be sent to every RELDISTR whether the
federates connected to that RELDISTR have subscribed to the data or not. The subscription
filtering is performed by the LRC upon receipt of the message. So even if a federation minimizes
which federates subscribe to data in an effort to reduce network traffic, the data will be sent to all
federates if DDM is not used.

23

One way to minimize network traffic is to configure a LAN with a single RELDISTR. All
federates on the LAN use the same RELDISTR to send reliable data to other federates at remote
locations. In the JADS EW Test federation, there were five federates in the TCAC in
Albuquerque. These federates were configured to use the RELDISTR created by the runtime
infrastructure executive (RTIexec). Further information on how to configure RELDISTRs in a
federation can be found in the “Reliable Service in RTI 1.3” paper found within the RTI.rid file
editor help pages.

8.4 Multicast Groups

In the RTI 1.3 series developed by DMSO, as federates join a federation, multicast groups are
created to handle the transmission of best effort data among the federates. A “broadcast”
multicast group is also created to handle best effort traffic sent to all federates. Using default
settings in the RTI.rid file, the RTI only initializes enough multicast groups to accommodate the
best effort traffic among three federates. Once a fourth federate joins a federation, all best effort
data destined for that federate (or any subsequent federates) is transmitted using the “broadcast”
multicast group. The consequence of this is that all best effort data sent to the fourth (and
subsequent) federate are sent to all federates regardless of whether the federate subscribed to the
data or not. The LRC filters data that its federate has not subscribed to. Another RTI may or
may not work the same way. Federation designers need to understand how the RTI.rid file
settings affect the messages that the network and federates have to handle.

8.5 RTI.rid File Parameters

The RTI.rid file contains user-modifiable parameters that allow the developer to optimize the
federation execution to achieve desired results (e.g., lower latency versus high throughput). As
stated above, the JADS EW Test federation used a single RELDISTR for the federates in the
TCAC. This was achieved by modifying the parameters auto_reldistr_config, reldistr_on,
auto_discover_on, and discov_string.

The JADS development team wanted to minimize latency on all messages in the federation. A
feature of the RTI that increases throughput (and can also increase latency) is bundling. If
bundling is turned on, the RTI will hold on to messages for a period of time so that multiple
messages can be sent in a single data packet. To minimize latency, bundling must be turned off.
The RTI.rid file parameters tcp_bundling_toggle and udp_bundling_toggle control bundling.
Prior to RTI 1.3r5 bundling was turned on by default. Starting with RTI 1.3r5 bundling was off
by default.

TCP and UDP polling_interval were the only other parameters modified by the JADS EW Test
federation. These identified the minimum amount of time between polls to check for incoming
network traffic. The default value for these parameters was 5 ms. The JADS EW Test federation
used a value of 0. A smaller interval means the network socket will be polled more frequently.
This reduces the likelihood of packets being dropped because of a filled socket buffer. Larger
intervals conserve CPU cycles.

24

8.6 Federate Join, Publish, and Resign

During RTI tests if, after a federate joined, it immediately began publishing data at its normal
data rates (e.g., 20 Hz), some best effort data were lost and reliable data experienced high
latency. If a delay of a few seconds was added at the start when the federate published data at a
low rate (e.g., 1 Hz), then the initial losses and high latencies did not occur.

It was also noticed during the JADS EW Test Phase 3 that high latency on reliable data and
dropouts on best effort data occurred when a federate joined late. Data recorded by EtherPeek (a
network packet analysis tool) showed that the RTI transmitted a large number of messages, some
of which were quite long when compared to the longest JADS message, when the late federate
joined. To minimize latency on the first messages published, the JADS team recommends that, if
possible, publication should be synchronized to begin only after all federates have joined.

It is important that federate shutdown be synchronized as well. After a federate resigns from a
federation, it must continue to tick the RTI for a few seconds so that the resignation is handled
gracefully.

9.0 Anomalies from Previous RTI Versions

The problems documented in this section were identified in previous versions of the RTI and
were fixed in subsequent versions (no later than RTI 1.3r6). Normally these would not be
included in a report of this type; however, we found some of these problems when we briefly
tested both RTI 1.3 NG (beta) and the Mak RTI indicating that there may be little if any
communication among RTI development teams. If you use an RTI from another vendor and it
exhibits these symptoms, it may be related to these problems.

9.1 Reliable Message Buffering

In some of our early RTI tests, we noticed that messages were being buffered when publish rates
exceeded 5 Hz (see Figure 3). Upon further investigation, we determined that the buffering was
caused by the IRIX TCP implementation of the Nagle algorithm. The Nagle algorithm buffers
small packets on the transmit side for a period of time in the event other messages are being sent
to the same node and thus can be sent in the same network packet. On SGI computers, the
network can wait up to 200 ms before sending the buffered packets.

The Nagle algorithm can be controlled using the TCP_NODELAY socket option. If
TCP_NODELAY is set to TRUE, then the Nagle algorithm is turned off. On the SGI computers,
the default value for this option is FALSE. Prior to version 1.3r2, the RTI ran with the operating
system default setting for the TCP_NODELAY socket option. This means that the Nagle
algorithm was in effect for both attribute and interaction data sent reliable. If data are published
using reliable transport mode at data rates at or above 5 Hz, then the latency of the data increases.
As a result of sharing this information with RTI developers, RTI version 1.3r2 sets the
TCP_NODELAY option to TRUE, disabling the Nagle algorithm. However, there are RTI.rid
file parameters that can be used to buffer messages.

25

0 . 0 0 0

0 . 0 5 0

0 . 1 0 0

0 . 1 5 0

0 . 2 0 0

0 . 2 5 0

1 4 7

10 13 16 19 22 25 28 31 34 37 40 43 46 49

S a m p l e

L
at

en
cy

 (
se

co
n

d
s)

Figure 3. Latency 101 Bytes at 20 Hz

9.2 Multicast Time To Live

In initial tests performed with RTI 1.0r2, best effort traffic was not received at any computer on a
different LAN. Using the network packet “sniffer” tool to look at the network data packets, a
JADS network engineer discovered that the time to live (TTL) value was set to one. A packet’s
TTL indicates how many hops it can take before it is discarded by the network. A value of one
does not allow a packet to exit the LAN, i.e., to pass through a router to reach a system on
another LAN or a WAN. Hence, a federation running with RTI 1.0r2 out of the box would not
allow federates to communicate best effort traffic outside of a LAN. Using the JADS 2-node
network configuration (shown in Figure 4) required network data packets to cross from one LAN
through the routers (Micro-IDNX-20) to reach the test federate on another LAN mirroring the
EW Test Phase 2 network architecture. DMSO provided a special library that allowed JADS to
use RTI 1.0r2 across our network communications gear. Subsequent versions of the RTI
provided for a user-defined parameter value in the RTI.rid file to set the TTL. This problem was
observed in the beta version of RTI 1.3NG and the MAK RTI.

9.3 Excessive Best Effort Data Loss

Prior to RTI 1.3r5, certain conditions in a federation could cause loss of best effort data from one
or more federates. The loss could last for many seconds and recover. Or it could be permanent
and never recover. Leading up to the Phase 2 tests, JADS experienced this problem
intermittently with the platform federate (publishing aircraft TSPI at 20 Hz). There were times
when some federates would not receive the TSPI data at the start of a run. It turned out that the
federate join sequence affected the problem. JADS was able to institute a join sequence that kept
the occurrence of the problem to a minimum. In general, to reduce this problem, the federate that
joins first should not publish any high-rate, best effort data if possible.

26

10.0 Unexplained Anomalies

10.1 Best Effort High Latency

You usually do not see abnormally high latency on data sent best effort. If a problem is
encountered in the multicast transmission of a message, the message is simply dropped. This is
not necessarily the case in architectures with the RTI installed. Phase 3 run 2 had higher than
normal latencies on some best effort data received by the AFEWES federate. The maximum
latency observed was more than one second. Normal latency for these messages should be less
than 100 ms. The expected behavior of the network itself is to drop UDP multicast messages
older than one second.

10.2 Latency Spikes

Figure 4 shows a latency spike that occurred in the one-way reliable tests using RTI 1.3r5. This
spike occurred while publishing 101 bytes at 400 Hz. Similar spikes occurred at all data rates
with all versions of the RTI as well as the raw TCP tests (without the RTI). The operating
system and the fact that the tests were executed on single processor computers may have caused
the problem. Latency spikes might be eliminated if the federates are executed on multiple
processor computers.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

16550 16570 16590 16610 16630 16650

Sample Number

L
at

en
cy

Figure 4. RTI 1.3r5 Reliable Latency Spike Publishing 101 Bytes at 400 Hz

27

10.3 Differential Latency

At times during the JADS EW Test, a message sent to multiple federates (using reliable
transport) had significantly different latency at each of the receiving federates. In some cases the
receiving federates were at different sites. There were also cases of the receiving federates
residing on the same LAN (in the TCAC in Albuquerque) having significant differences in
latency.

Phase 3 run 28 is an example of the differential latency at different sites. ACETEF sent a burst
of system under test (SUT) receiver track update (RTU) messages followed by two SUT jammer
technique command (JTC) messages. In either the AFEWES log file summary or the JADS log
file summaries, there was an abnormally high latency (> 200 ms in many cases) for the second
JTC, but normal latency for the first. Also, if there was a high latency for the second JTC
message in the AFEWES summary, then there was a normal latency in the JADS summaries, and
vice versa. Perhaps, this indicates some kind of transient response problem in the RELDISTR.
Or, it might be a transient response problem in the IRIX TCP.

Phase 3 run 121 had examples of differential latency on the TCAC LAN. A JTC message was
sent from the ACETEF federate. Most of the federates in the TCAC received it with, at most, 88
ms of latency. The latency on this message to the TCF federate (also in the TCAC) was 225 ms.

10.4 Reliable Data Loss

By definition, reliable data are not supposed to ever get lost. They may arrive very late, but they
should never be lost. During run 146 of Phase 3, a reliable message was lost. It appeared in the
publishing federate's log file. The network sniffer data on the sending side confirm the message
was transmitted. The network sniffer data on the receiving side show that the message was
received and a TCP acknowledgment was sent back to the publishing federate. This implies that
the receiving federate's LRC received the message. However, the message never appeared in the
log files for any of the federates that were supposed to receive it. So the message was never
passed from the RTI to the federate. Looking at the network analysis tools, there were no
indications of any problems or errors, or excessive traffic at the time that the message was sent.
It seems as though all six of the receiving LRCs lost the message.

11.0 HLA Application to Other Types of T&E

In this section we look at how ADS applied to the other two JADS tests. The section concludes
with our assessment of the utility of HLA to T&E in general.

11.1 HLA Application to the End-to-End Test and Legacy Simulations

JADS found the strongest utility for distributed testing in the area of C4ISR systems. The JADS
End-To-End (ETE) Test was designed to evaluate the utility of ADS to support testing of C4ISR
systems. The test focused on the Joint Surveillance Target Attack Radar System (Joint STARS)

28

as one component of a representative C4ISR system. The ETE Test also evaluated the capability
of the JADS TCAC to control a distributed test of this type and remotely monitor and analyze
test results.

The ETE Test consisted of four phases. Phase 1 developed or modified the components needed
to develop the ADS test environment. Phase 2 used the ADS test environment to evaluate the
utility of ADS to support DT&E and early OT&E of a C4ISR system in a laboratory
environment. Phase 3 transitioned portions of the architecture to the E-8C aircraft, ensured that
the components functioned properly, and checked that the synthetic environment interacted
properly with the aircraft and actual light ground station module (LGSM). Phase 4 evaluated the
ability to perform testing and evaluation in an ADS-enhanced live test environment.

In 1994, the JADS ETE Test began the development of a radar simulation, the Virtual
Surveillance Target Attack Radar System (VSTARS), that represented the Joint STARS E-8C
aircraft and communicated with the Army’s ground station module (GSM). This simulation
would receive target data by interfacing with a DIS network that utilized IEEE Standard 1278.
JADS found that for one phase of the test, the data provided in the entity state protocol data units
(ESPDU) had to be reduced to fit within the constraints of a satellite communications
(SATCOM) link to the E-8C aircraft. To solve this problem, JADS developed the concept of
ground and air network interface units (NIU). This concept had a ground NIU (GNIU) that
received and sent DIS protocol data units (PDU) - primarily ESPDUs. The GNIU then processed
the ESPDU - dropping all the fields that were not used by VSTARS, performing coordinate
conversions between World Geographic System 84 and Topocentric Coordinate System, and
reducing the accuracy of the coordinate attributes from 32 bits to 16 bits before passing it to the
air NIU (ANIU), either via SATCOM or system bus. In an HLA environment, the data
requirements for VSTARS could be limited to the reduced data sent to the ANIU, thus
simplifying the interface requirements. However, JADS decided to proceed with the use of DIS
for the test utilizing VSTARS because we decided HLA was too immature to use in the effort.
(The contracts for VSTARS were awarded prior to the HLA protofederation efforts.) Continued
use of VSTARS mandates that it become HLA compliant prior to the first day of fiscal year 2001
or be retired.

JADS worked with the VSTARS developers to identify an executable DIS to HLA migration
strategy. JADS identified several issues that needed to be addressed in the migration strategy.
The key issue for the RTI was the number of objects that Joint STARS was capable of tracking
and that VSTARS would be able to handle. Although the JADS test presented the VSTARS
with more than 9,000 individual target objects during our tests, more recent uses of VSTARS
have had requirements approaching 100,000 targets. We were curious about how many objects
the RTI was capable of supporting, so we ran a test to see how many objects could be declared
before the RTI failed. The results indicated that the current RTIs might have to be altered to
support federations that require 100,000 objects to be visible to a single sensor.

The second issue that affected the migration strategy came from the platform hardware and
operating system that VSTARS uses. Since VSTARS is essentially a set of software interfaces
and models that allow the actual Joint STARS operational flight programs (OFP) to interact with

29

a synthetic environment, the VSTARS is hosted on the same hardware (DEC Alpha) and
operating system (Open VMS) as the OFP. That combination was not supported by any of the
available RTI versions. Since it was impractical to migrate VSTARS, and we were concerned
about the performance of an RTI designed and tested in a SUN/SOLARIS environment being
compiled for ALPHA/Open VMS, we recommended using a gateway that would host the RTI
and format the data messages for VSTARS.

The final issue stemmed from the potential uses of VSTARS. The projected uses encompass the
spectrum from a simulation tool to evaluate and perform trade-offs on new technology, a
stimulator for test and evaluation, a stimulator for mission crew training, a mission rehearsal tool,
and a simulation of Joint STARS for exercise support. Each of these applications has a different
set of requirements, interfaces, and customers. At the same time, resources and configuration
management issues dictate a minimum number of VSTARS configurations and interface
strategies. They are faced with the development of a flexible interface capable of supporting a
variety of requirements and capable of operating with a variety of RTIs. Such an interface would
be a challenge for a team with a lot of experience in distributed simulation, much more so to a
team of radar designers with a minimum of simulation and distributed simulation experience.
From the standpoint of legacy simulations, especially those designed for test and evaluation, we
believe the need to develop a flexible interface to a single simulation or test facility will be a
common requirement. Future developers of such interfaces will need to carefully analyze their
requirements and options to be successful.

11.1.1 RTI Object Declaration Tests

In the RTI object declaration tests, JADS attempted to register a certain number of objects,
publish one update for each object, and then resign. The updates were published at 100 Hz. Two
federates were used in the test. One registered the objects and sent the updates and the other only
subscribed to the attribute and received the update.

Table 9. Object Declaration Test Results

RTI Max
Objects

Time to
Register

Time to
Resign

Data Rate
Attempted

Data Rate
Achieved

RTI 1.3r6 9500 315 sec 330 sec 100 Hz 100 Hz
RTI 1.3 NG beta 10,000 45 sec 41 sec 100 Hz 26 Hz
Mak RTI 1.3b 10,000 128 sec 0 100 Hz 78 Hz

JADS found that if you do the test with only one federate, you can register more objects without
a problem. One-federate tests may be the basis for some claims about how many objects some
RTIs can register. However, we’re not sure how meaningful it is to be able to register objects
and publish attributes if no other federate is around to receive the data.

30

For RTI 1.3r6
• Both federates must join the federation before the objects are registered. If the receiver waits

until all objects have been registered before it joins, it will get an RTI internal error.
• Tick the RTI for 1.5 seconds during the register process every 100 objects. If you don’t do

this, the sender gets an RTI internal error.

For RTI 1.3 NG beta
• The sender registered all objects before the receiver joined. When the receiver joined before

the registration started, it took 20 minutes to register and discover the objects.

For Mak RTI 1.3b
• Since the other RTIs had a limit of approximately 10,000 objects, Figure 9 shows the

performance of the Mak RTI with 10,000 objects. However, the Mak RTI was able to
register and update more objects. It took fifteen minutes to register 25,000 objects. But only
a 29 Hz update rate could be achieved while trying to publish at 100 Hz. The RTI was able
to register 75,000 objects in 80 minutes. But the publication of the data at 100 Hz, which
should have lasted 12.5 minutes, took more than an hour before the program was terminated.

• The resign of both federates was immediate.

11.2 HLA Application to the System Integration Test

JADS found utility for testing precision guided munitions using distributed testing techniques.
SIT was executed in two different DIS-based architectures. In preparing this report, JADS re-
examined the SIT to determine what, if any, concerns would have been introduced by replacing
DIS with HLA. Two concerns were identified. The first was latency. While neither test was a
true closed loop between the shooter and the target (the target did not respond to the missile
firing), the one-way latency achieved in the Linked Simulator Phase was 100 ms from data
production to consumption. This latency should be achievable in HLA-based architectures.
However, the data would have to be passed using best effort and multiprocessor computers might
have been required as well. It is possible that data loss might have been an issue for the one-time
messages such as start and stop, but it is not likely to have been much worse than the DIS
broadcast versions of the same messages. Data loss was not an issue for SIT. JADS believes
that an HLA-based architecture could be developed using a current RTI that would meet SIT
latency, although the use of multiprocessor computers would increase the cost of the architecture.
HLA addresses this concern.

The second concern was the use of non-HLA links in the architectures. SIT used two non-DIS
links, one in each phase. The Linked Simulator Phase required a 1553 data link from the cockpit
simulator acting as the shooter to the missile seeker laboratory. The data link was required to
pass the initialization messages to the missile. Signal timing constraints prevented this link from
working in DIS. The solution was to use a native 1553 link between the facilities. The Live Fly
Phase required telemetry links from the live aircraft on the range. These signals were converted
to DIS messages by the ground station receiving the signals. These are both cases where a non-
HLA-link would be required to supply critical information into the federation. Since these would

31

not be documented in the FOM according to HLA Rule 3, it points to the need for an interface
control document (ICD) that would cover more than the FOM. These types of links are likely to
be very common in the T&E environment. The current HLA allows the federation designer to
use additional documents and tools in federation development. HLA addresses this concern.

11.3 General Utility of HLA to T&E

JADS demonstrated that HLA can support T&E federations. As T&E makes use of distributed
testing technology, the community will use the protocols and connecting hardware that make
sense. For example, telemetry is likely to be used where live aircraft on an open air range are
involved in a distributed test. This means that the OMDT and the FEPW are not the only tools a
test designer will need to create distributed tests when HLA is only one of the linking
architectures. This will also stress the definition of “HLA compliant.”

HLA promises to provide access to simulations that are otherwise unavailable to the tester. This
will allow the tester to develop richer synthetic environments for T&E. This also places a
demand on the test designer, the simulation owner, and the RTI developer. The test designer will
have to take the lead in developing the FOM and other ICDs needed to bring together a
successful federation. Simulation owners will have to implement flexible interfaces to allow the
simulations to be used in a variety of federations. RTI developers need to work with test
developers to create RTIs with the right performance characteristics to be useful to the tester.

As the VSTARS experience demonstrates, there may be barriers to migrating non-HLA
simulations to HLA that each simulation owner will have to address. As with all models, HLA
simulations have long-term ownership issues and costs that federate and federation developers
need to understand.

As the SIT experience demonstrates, there is a real requirement for an ICD that encompasses the
entire effort. The need for native protocol communications among players to occur outside of the
RTI is real. T&E federation designers will have to understand how to make non-HLA players
interact with HLA federations in a common exercise.

12.0 T&E HLA Requirements

JADS found that, in general, there were no unique T&E requirements that were not being met by
the HLA. There are some areas of concern that the T&E community must understand to use
HLA effectively. The concepts of re-use and the implication of the HLA to the long-term
ownership cost for any simulation are not well understood at this time. HLA has several features
that make it attractive to simulation developers and owners of legacy simulations that impact the
ability of other federations to use the simulation. These features are HLA compliance, the lack of
required standard data messages, and RTI interoperability.

Compliance testing is required to meet the intent of Dr. Kaminski’s memorandum directing the
use of HLA by all simulations. The HLA compliance test requires that the simulation interact
with a federation but does not specify what federation. Those looking to include a particular

32

simulation in a federation will have to look past the compliance certification to understand more
about how the compliance test was done (what federation was used in the test, what RTI version
was used, what RTI services were used, etc.) and how well the simulation itself functions (has
the simulation been used for the intended purpose, are there limitations to the simulation, has the
simulation been through verification/validation, etc.). HLA compliance alone is not sufficient
reason to include a particular simulation in your federation.

HLA provides flexibility to existing simulations and to the T&E community because there are no
required standard data formats or data messages that the simulation must implement. However,
this flexibility comes with a cost. Each federation must, through whatever process, reach
agreement on the data messages and data dictionary that will be used by the federation. There is
no guarantee that the data messages used in federation A will be the same as federation B even if
they use most of the same federates. This means that simulations will have to be designed with
some flexibility to allow them to interact with different federations or will be required to develop
modifications for each federation. T&E resources are generally used by more than one customer.
This means those resources will have to design flexibility into their interface. This also means
that careful configuration control is necessary to ensure the right interface is installed for each
given federation. T&E will undoubtedly take advantage of the flexibility, but designers need to
understand the implications.

The final impact to reuse is RTI interoperability. RTIs are not currently interoperable, and many
in the field do not believe this is a requirement. Requiring RTIs to implement services in the
same way is likely to stifle commercial competition in RTI development. Performance
breakthroughs in one vendor’s RTI product could be lost when it has to interact with a
competitor’s product. However, since all RTIs are supposed to implement the same
specification, the federate owner should be able to swap out RTI versions with little effort,
assuming the desired RTI is available for the federate hardware/operating system combination.
JADS found this to be generally true for the limited number of services used in the EW Test
federation. The issue is not the ability to interchange RTI versions, but the real potential for
differences in performance between RTI versions. Not only should each port of an RTI be
optimized for the target operating system, but also each federate owner and federation will likely
have to perform further optimization for their application. Additionally, each T&E federation
will have to conduct a fairly rigorous integration effort, thus increasing cost of ownership. All
the optimization and integration will be done as often as needed. If the federate owner is able to
exactly recreate the configuration needed for each federation, then the optimization/integration is
done once. Therefore, as each RTI is installed and optimized, the federate owner will become
responsible for documenting the hardware and software configuration so that it can be restored
for future executions with that federation.

While the above ownership issues are not unique to T&E, the issues need to be clearly
understood by the T&E community. Where the issues impact performance, it is critical that the
T&E community understand and address them as early in federation development as possible.
Where the issues impact the ease of being used in multiple federations, the T&E community
needs to understand the issue to reduce its cost of ownership as well as realize that the cost of
creating a federation may increase if other simulations didn’t design for reuse.

33

12.1 HLA Rules

JADS did not identify any additional T&E requirements for the HLA rules.

12.2 HLA Interface Specification

JADS did not identify any additions to the interface specification required by T&E.

12.3 RTI Services

The JADS federation did not use time management, ownership management, or DDM services
because of the additional overhead incurred by these services. Time management services
guarantee the time-ordered delivery of messages throughout the federation. Ownership
management services allow federates to transfer ownership of objects to other federates. DDM
services allow the federation implementers to partition the simulation into filtering regions and
limit a federate’s knowledge of the federation execution to a specific region. DDM services can
reduce the network load because filtering is performed by the publishing federate. The default
for the RTI 1.3 family is to have subscription filtering performed by the receiving federate.

Table 10. RTI Services Used by JADS Federates

createFederationExecution
destroyFederationExecution
discoverObjectInstance
getAttributeHandle
getInteractionClassHandle
getObjectClassHandle
getParameterHandle
joinFederationExecution
publishInteractionClass
publishObjectClass
receiveInteraction
reflectAttributeValues
registerObjectInstance
resignFederationExecution
sendInteraction
subscribeInteractionClass
subscribeObjectClassAttributes
updateAttributeValues

34

12.4 RTI Performance

T&E will likely choose RTI performance over RTI services. Performance has many dimensions.
JADS identified two areas of interest to the T&E community. The first was latency. Federations
that are examining the interaction of computer systems or the simulation of high-speed, highly
maneuvering platforms are interested in reducing latency. JADS found that considerable
performance improvements could be made using the current generation RTIs hosted on
multiprocessor computers. Using best effort transmission exclusively also reduces latency and
allows the federation designer to use less expensive LAN components (since multicast UDP is
not affected by collisions.) JADS also found that the RTI induced a variation into the latency.
Reducing the RTI component of latency variation provides the designer with more repeatable
results.

The second dimension of performance was the size of the object space that any single federate
can address. In our investigation of migrating a simulation of Joint STARS to HLA, we learned
about the limits on the size of the object space that the current generation of RTIs can deal with.
The Joint STARS was capable of detecting and imaging well over 10,000 objects. However, RTI
1.3 release 6 was capable of declaring only 9,500 objects. For testing the capacity of the RTI for
objects, we had one federate declare objects, another federate subscribe to the attributes of the
objects, and the first federate publish one update for each object. There were cases where more
than 10,000 objects could be declared as long as no federate subscribed to them. However, this
would not be a very useful federation.

As T&E gets more experience with HLA, more dimensions of performance will be identified.
Some of these will be addressed as the communications protocols and object-oriented software
technologies evolve and as RTI developers try to take advantage of other technology such as
telemetry protocols. It is unrealistic to expect that a single RTI will ever be produced that will
meet all the T&E performance requirements. Commercial development efforts are likely the key
for the T&E community to get the RTI products they will need in the future.

12.5 HLA Support Tools

Most of the tools being created for HLA were too immature to be of much use during the
development of the JADS EW Test federation development. As such, JADS did not evaluate
them for T&E applications. However, JADS did find one requirement in the area of loggers.
JADS developed its own logger to accurately measure latency between federates. The JADS
logger was simple and it logged messages as they were moved into and out of the RTC. This
style of logger was required to accurately measure latency, to identify bottlenecks in the
architecture, and to unambiguously resolve temporal order of events. Federate loggers do not
address these needs because of the transmission protocols used by the current generation of RTIs.
Other tools to instrument and manage the execution of the federation that are just now coming of
age should help the test community. Other tools to help federation design and development such
as the OMDT and the FEPW are also useful, and as they become more automated, should reduce
the work load during federation development.

35

There were several software support tools available that JADS used to support the federation
development process. More tools are currently being developed and will be made available by
DMSO. Open tool interfaces have also been developed (e.g., data interchange formats) to
facilitate commercial tool development. In addition, several DoD agencies have ongoing small
business innovative research (SBIR) initiatives developing HLA support tools. These tools are
designed to provide automated support for development of HLA object models (OMs), planning
the federation execution environment, and optimizing the RID file. During the development of
the EW Test, JADS used the following tools.

12.5.1 Object Model Development Tool

This tool provides support for developing HLA OMs, generating RTI FED, and exchanging OMs
with the object model library (OML). The OMDT automates the process of constructing SOMs
and FOMs. The tool provides an HLA user with an interface to OMs consistent with the tabular
views defined in the HLA OMT specification. As an OM is constructed, the OMDT performs
consistency checking to ensure that the SOM complies with HLA rules. Limitations in the
format, organization, and content permitted caused JADS to develop an ICD to fully document
all aspects of JADS federation implementation.

In addition to aid in constructing object models, the OMDT provides the user with an interface to
DMSO’s M&S resource repository. This software allows potential users to browse, download
and upload OMs to the repository. After the object model is built using the OMDT, the tool can
generate the FED file required by the RTI to execute the federation. The FED file is also used
for compliance testing of federates.

JADS used an early version of the OMDT software. Many improvements have been developed
and are available from DMSO.

12.5.2 Federation Execution Planner's Workbook

This tool assists with planning the federation execution environment, identifying the hardware
and network environment, and specifying a federate's responsibilities for providing and
consuming federation data.

Originally, JADS viewed the FEPW as the primary tool for communicating requirements to the
RTI development community. JADS began working with DMSO to articulate our perceived
requirements for RTI performance in May 1997. While we could articulate what performance we
wanted out of the federation, we weren’t sure what aspects of performance were critical from an
RTI builder’s perspective. Our first attempt was to create a system specification to describe
RTI/network performance. DMSO proposed using the first generation of RTI performance
workbooks which were Excel spreadsheets being designed for users of federations to
communicate different aspects of RTI performance requirements. We completed these and have
subsequently worked through two other versions of DMSO tools.

36

While it remains to be seen how well the tools facilitate the communication among RTI
developers and federation developers, we found the FEPW tool to be extremely useful in creating
the JADS EW Test FOM. We constantly referred to the FEPW, our own concept model
spreadsheets, and our ICD. The FOM development became another cross-check of the different
design representations prior to federate development and integration.

Throughout the process of developing and articulating FOM requirements, JADS raised
questions and provided comments to improve not only the product but also the level of
understanding on both the RTI developer and on the federation developer. DMSO is working to
couple the OMDT and the FEPW to cut down on data entry duplication. There is still work that
needs to be done. For example, one of the critical aspects of RTI performance seems to be the
amount of computing resources available for it to use. Yet articulating this requires the
developer to quantify the tick rate without necessarily understanding the timing implications to
the simulation and to overall performance of the federate.

12.5.3 RTI Initialization Data Editor

The RID file editor tool supports federation development by producing a default RID file or by
permitting federation managers to optimize selected elements of the RID file for the specific
federation execution. While this tool should be useful, JADS did not use the editor. DMSO led
us through the editing process, making the editor unnecessary.

12.6 Verification and Validation

T&E will demand more provable quality of results than other communities. This means that the
RTI developers need to use repeatable mature software development processes to develop and
maintain the RTI products used by T&E. Acquisition decisions and legal actions can hinge on
the results of T&E events. The RTI needs to be as trusted as the other hardware and software
components in the test event. Furthermore, the longevity of a T&E federation may well last
through the development of a system. This could be well over a decade. The federation will be
accredited and that accreditation must remain in force or be continually updated during that time.
During that decade of development, change in the architecture is inevitable. However, the
change and the cost of re-accreditation must be managed. The T&E community will expect
changes to be documented in some fashion similar to version description documents. This is not
done in the current generation of RTIs. Shortfalls in documentation and developer discipline will
force the T&E community to invest more in tests and tools to ensure RTI performance is up to
par.

13.0 Summary

HLA has utility for T&E. It is an enabling technology for distributed testing. As more
simulations become HLA compliant, they become resources to the test designer looking to create
a richer, more realistic synthetic environment for testing. However, HLA is still maturing. As it
matures, T&E has requirements that need to be met.

37

The first requirement is that HLA be accepted so that simulations become available for T&E.
The ultimate acceptance of HLA rests on the availability of suitable RTIs and on the RD&E and
T&E communities’ ability to create a workable method of reusing simulations within the current
rules of HLA. While current RTIs are demonstrably functional, DMSO has not clearly
demonstrated a workable method of reuse. Pockets within the RD&E community (and within the
T&E community) are advocating RTI interoperability and standard data structures and definitions
to help them deal with reuse. While RTI interoperability and standard data structures would
improve reusing simulations, neither of these is in the best interest of the T&E community. This
observation is discussed in the context of the remaining T&E requirements below.

Standard data structures and definitions are useful to the T&E community, but as JADS found,
there are practical reasons why data formats may need to be changed. The JADS ETE Test
demonstrated this requirement through the development of multiple interfaces to allow them to
live within the constraints of a satellite communications link. T&E will find other constraints as
live players are mixed with simulations. T&E require the flexibility to change data formats to
meet the needs of the test.

The T&E community also requires RTI performance. Specific performance requirements can’t
be articulated without articulating the supporting computer/communications hardware and
operating system software. In fact, we don’t know enough about future tests to even understand
all the possible areas of performance that are important to the T&E community. JADS found
two: latency, and size of object space. Others exist. In lieu of specific requirements, this
observation can be made; the T&E community will be focused on RTI performance more than on
RTI services. Commercial competition seems to be the best mechanism for improving
performance. However, competition is at odds with RTI interoperability. The RD&E
community’s desire to make RTIs interoperable may well reduce the incentive for commercial
vendors to improve RTI performance beyond today’s levels.

The T&E community will be equally focused on making sure that the RTI development
processes, testing, and documentation support the VV&A of long-term federations. Poor
documentation will increase the cost of long-term ownership of a T&E federation by requiring
additional testing to support VV&A. However, testing quality into software is not as effective as
designing it in. Good design practices are usually accompanied by good documentation
practices. Good documentation will allow the federation owner to understand what risks the RTI
may bring to the federation and, as changes occur, what impact the changes may have on the
federation. The T&E community will require quality documentation on RTIs that it uses.

HLA needs to continue to develop and evolve to better help the T&E community solve shortfalls
in their ability to test new systems. The current rules and tools are not an impediment to the use
of HLA by the T&E community. Current RTIs provide the services that T&E require. However,
not enough is known about the different facets of performance to state what performance levels
T&E will require. Each federation will have to make its own statement of performance. More
experience is needed. Meanwhile, each T&E facility and test organization should begin creating
a trained cadre of personnel to prepare to use HLA effectively. Familiarity with HLA, object-
oriented design, and C++ is necessary to understand where and how HLA may be applied within

38

your T&E enterprise. Finally, there is no substitute for experience. Formal education only takes
you part way up the learning curve. Organizations that expect to use HLA in the future need to
practice with the tools now so that they are ready when they need to either develop a federation
or a federate. Above all, the T&E community needs to remain involved in HLA to make sure
that HLA does not evolve into something that the community can’t use.

39

Appendix A - HLA Terms

affected attributes The specific attributes of an object class instance whose value in
a federation execution may be affected by that instance's
participation in a dynamic interaction with another object class.

application programmer’s
interface (API)

A library of function calls which allows a federate to interact
with the runtime infrastructure.

association A type of static relationship between two or more object classes,
apart from class-subclass or part-whole relationships.

attribute A named portion of an object state.

attribute ownership The property of a federate that gives it the responsibility to
publish values for a particular object attribute.

cancellation A mechanism used in optimistic synchronization mechanisms
such as time warp to delete a previously scheduled event.
Cancellation is a mechanism used within the time warp
executive and is normally not visible to the federate. It is
implemented (in part) using the runtime infrastructure’s event
retraction mechanism.

causal order A partial ordering of messages based on the “causally happens
before” (→) relationship. A message delivery service is said to
be causally ordered if for any two messages M1 and M2

(containing notifications of events E1 and E2, respectively) that
are delivered to a single federate where E1 → E2, then M1 is
delivered to the federate before M2.

class A description of a group of objects with similar properties,
common behavior, common relationships, and common
semantics.

class hierarchy A specification of a class-subclass or "is-a" relationship between
object classes in a given domain.

40

conceptual model of the
mission space (CMMS)

The conceptual model of the mission space (CMMS) is one of
the three components of the DoD technical framework. CMMS
is first abstractions of the real world and serves as a frame of
reference for simulation development by capturing the basic
information about important entities involved in any mission
and their key actions and interactions. CMMS is a simulation-
neutral view of those entities, actions, and interactions occurring
in the real world.

common federation
functionality

Agreements on common simulation functionality (services and
resources) are finalized among all participants in the federation
during the federation development process. Federation
members identified during federation design will propose
opportunities for common services in areas of assigned
responsibilities (also established during federation design)
during federation development for discussion and negotiation
among all federation participants. For instance, agreements on
common representations of terrain (data source, resolution,
dynamic versus static, etc.) and environment (required types,
data sources, resolution, servers, etc.) would be negotiated and
agreed to, as would any relevant federation-specific algorithms
(e.g., extrapolation).

component class An object class that is a component or part of a "composite"
object which represents a unified assembly of many different
object classes. The identification of a component class in the
object model template should include cardinality information.

conceptual analysis The step in the federation development and execution process
which establishes the conceptual framework for the federation.
It feeds the design of the overall federation structure. The
conceptual view of the objects and interactions that must be
represented in the federation is key to identifying reuse
opportunities in established federation object models and in
determining candidates for federation membership. The high-
level representation of the federation scenario refined during
conceptual analysis also provides the basis for generation of a
more detailed scenario instance during federation
design/development.

41

conservative synchronization A mechanism that prevents a federate from processing messages
out of time stamp order. This is in contrast to optimistic
synchronization. The Chandy/Misra/Bryant null message
protocol is an example of a conservative synchronization
mechanism.

constrained simulation A simulation where time advances are paced to have a specific
relationship to wall-clock time. These are commonly referred to
as real-time or scaled-real-time simulations. Here, the terms
constrained simulation and (scaled) real-time simulation are
used synonymously. Human-in-the-loop (e.g., training
exercises) and hardware-in-the-loop (e.g., test and evaluation
simulations) are examples of constrained simulations.

coordinated time
advancement

A time advancement mechanism where logical clock advances
within each federate only occur after some coordination is
performed among the federates participating in the execution,
e.g., to ensure that the federate never receives an event notice in
its past. Aggregate level simulation protocol, for example, uses
coordinated time advancement.

current time (of a federate) Same as federate time.

event A change of object attribute value, an interaction between
objects, an instantiation of a new object, or a deletion of an
existing object that is associated with a particular point on the
federation time axis. Each event contains a time stamp
indicating when it is said to occur (also see definition of
message).

event notice A message containing event information.

exception An exception in the programming language sense of a possible
error - signaling return value. The initiator will be informed of
these exceptions.

federate A member of a high level architecture federation. All
applications participating in a federation are called federates. In
reality, this may include federate managers, data collectors, live
entity surrogates simulations, or passive viewers.

42

federate time Scaled wall-clock time or logical time of a federate, whichever
is smaller. Federate time is synonymous with the "current time"
of the federate. At any instant of an execution different
federates will, in general, have different federate times.

federation A named set of interacting federates, a common federation
object model, and supporting runtime infrastructure, that are
used as a whole to achieve some specific objective.

federation execution The federation execution represents the actual operation, over
time, of a subset of the federate and the runtime infrastructure
initialization data taken from a particular federation. It is the
step where the executable code is run to conduct the exercise
and produce the data for the measures of effectiveness for the
federation execution.

federation execution sponsor Federation development begins with a user and a requirement.
The federation execution sponsor is the organization that uses
the results and/or products from a specific application of
modeling and simulation. It is the group responsible for
establishing the need for the development and execution of a
federation. They also establish the framework for the measures
of effectiveness by which the results of the execution are
employed.

federation object model
(FOM)

An identification of the essential classes of objects, object
attributes, and object interactions that are supported by a high
level architecture federation. In addition, optional classes of
additional information may also be specified to achieve a more
complete description of the federation structure and/or behavior.

43

federation objectives This is the statement of the problem that is to be addressed by
the establishment and execution of a federation. The description
of the problem domain implicit in the objectives statement is
critical for focusing the domain analysis activities in the
conceptual analysis phase. It specifies the top-level goals of the
federation and may specify the operational need or shortfall
from which federation developers will derive a scenario for the
federation execution. The federation objectives drive this
specification, as the scenario development phase must utilize the
statement of the objectives to generate a viable context for
system evaluations intrinsic to the federation objectives. High-
level testing requirements implied in the federation objectives
may also drive the identification of well-defined "test points"
during development of the federation scenario.

federation time axis A totally ordered sequence of values where each value
represents an instant of time in the physical system being
modeled, and for any two points T1 and T2 on the federation
time axis, if T1 < T2, then T1 represents an instant of physical
time that occurs before the instant represented by T2. Logical
time, scaled wall-clock time, and federate time specify points on
the federation time axis. The progression of a federate along the
federation time axis during an execution may or may not have a
direct relationship to the progression of wall-clock time.

fidelity The similarity, both physical and functional, between the
simulation and that which it simulates.

federation required execution
details (FRED)

The federation required execution details (FRED) is a global
specification of several classes of information needed by the
runtime infrastructure to instantiate an execution of the
federation. Additional execution-specific information needed to
fully establish the "contract" between federation members (e.g.,
publish responsibilities, subscription requirements, etc.) is also
documented in the FRED. The set of management requirements
provides one source of input to the FRED specification, which
will be recorded in a standardized format.

Greenwich mean time (GMT) Mean solar time for the Greenwich meridian, counted from
midnight through 24 hours. Also called universal time
[coordinated] or Zulu time.

44

happens before,
causal (→)

A relationship between two actions A1 and A2 (where an action
can be an event, a runtime infrastructure (RTI) message send, or
an RTI message receive) defined as follows: (i) if A1 and A2

occur in the same federate/RTI, and A1 precedes A2 in that
federate/RTI, then A1 →A2, (ii) if A1 is a message send action
and A2 is a receive action for the same message, then A1 →A2,
and (iii) if A1 →A2 and A2 →A3, then A1 →A3 (transitivity).

happens before,
 temporal (→t)

A relationship between two events E1 and E2 defined as follows:
if E1 has a smaller time stamp than E2, then E1 →t E2. The
runtime infrastructure provides an internal tie-breaking
mechanism to ensure (in effect) that no two events observed by
a single federate contain the same time stamp.

independent time
advancement

A means of advancing federate time where advances occur
without explicit coordination among federates. Distributed
interactive simulation is an example of a federation using
independent time advancement.

interaction An explicit action taken by an object, that can optionally (within
the bounds of the federation object model) be directed toward
other objects, including geographical areas, etc.

interaction parameters The information associated with an interaction which objects
potentially affected by the interaction must receive in order to
calculate the effects of that interaction on its current state.

known object An object is known to a federate if the federate is reflecting or
updating any attributes of that object.

lower bound on the time
stamp (LBTS)

Lower bound on the time stamp (LBTS) of the next time stamp
ordered (TSO) message to be received by a runtime
infrastructure (RTI) from another federate. Messages with time
stamp less than LBTS are eligible for delivery by the RTI to the
federate without compromising time stamp order delivery
guarantees. TSO messages with time stamp greater than LBTS
are not yet eligible for delivery. LBTS is maintained within the
RTI using a conservative synchronization protocol.

local time The mean solar time for the meridian of the observer.

45

logical time A federate’s current point on the logical time axis. If the
federate’s logical time is T, all time stamp ordered (TSO)
messages with time stamp less than T have been delivered to the
federate, and no TSO messages with time stamp greater than T
have been delivered; some, though not necessarily all, TSO
messages with time stamp equal to T may also have been
delivered. Logical time does not, in general, bear a direct
relationship to wall-clock time, and advances in logical time are
controlled entirely by the federates and the runtime
infrastructure (RTI). Specifically, the federate requests
advances in logical time via the time advance request and next
event request RTI services, and the RTI notifies the federate
when it has advanced logical time explicitly through the time
advance grant service, or implicitly by the time stamp of TSO
messages that are delivered to the federate. Logical time (along
with scaled wall-clock time) is used to determine the current
time of the federate (see definition of federate time). Logical
time is only relevant to federates using time stamp ordered
message delivery and coordinated time advances, and may be
ignored (by requesting a time advance to “infinity” at the
beginning of the execution) by other federates.

logical time axis A set of points (instants) on the federation time axis used to
specify before and after relationships among events.

look-ahead A value used to determine the smallest time stamped message
using the time stamp ordered service that a federate may
generate in the future. If a federate’s current time (i.e., federate
time) is T, and its look-ahead is L, any message generated by the
federate must have a time stamp of at least T+L. In general,
look-ahead may be associated with an entire federate (as in the
example just described), or at a finer level of detail, e.g., from
one federate to another, or for a specific attribute. Any federate
using the time stamp ordered message delivery service must
specify a look-ahead value.

46

mean solar time A time measurement where time is measured by the diurnal
motion of a fictitious body (called “mean sun”) which is
supposed to move uniformly in the celestial equator, completing
the circuit in one tropical year. Often termed simply “mean
time.” The mean sun may be considered as moving in the
celestial equator and having a right ascension equal to the mean
celestial longitude of the true sun. At any given instant, mean
solar time is the hour angle of the mean sun. In civil life, mean
solar time is counted from the two branches of the meridian
through 12 hours; the hours from the lower branch are marked
a.m. (ante meridian), and those from the upper branch, p.m.
(post meridian). In astronomical work, mean solar time is
counted from the lower branch of the meridian through 24
hours. Naming the meridian of reference is essential to the
complete identification of time. The Greenwich meridian is the
reference for a worldwide standard of mean solar time called
Greenwich mean time or universal time [coordinated].

message A data unit transmitted between federates containing at most
one event. Here, a message typically contains information
concerning an event, and is used to notify another federate that
the event has occurred. When containing such event
information, the message’s time stamp is defined as the time
stamp of the event to which it corresponds. Here, a “message”
corresponds to a single event, however the physical transport
media may include several such messages in a single “physical
message” that is transmitted through the network.

message (event) delivery Invocation of the corresponding service (reflect attribute values,
receive interaction, instantiate discovered object, or remove
object) by the runtime infrastructure to notify a federate of the
occurrence of an event.

model A physical, mathematical, or otherwise logical representation of
a system, entity, phenomenon, or process. [DoD 5000.59]

object A fundamental element of a conceptual representation for a
federate that reflects the “real world” at levels of abstraction and
resolution appropriate for federate interoperability. For any
given value of time, the state of an object is defined as the
enumeration of all its attribute values.

47

object model A specification of the objects intrinsic to a given system,
including a description of the object characteristics (attributes)
and a description of the static and dynamic relationships that
exist between objects.

object model framework The rules and terminology used to describe high level
architecture object models.

object ownership Ownership of the identification attribute of an object, initially
established by use of the instantiate object interface service.
Encompasses the privilege of deleting the object using the delete
object service. Can be transferred to another federate using the
attribute ownership management services.

optimistic synchronization A mechanism that uses a recovery mechanism to erase the
effects of out-of-order event processing. This is in contrast to
conservative synchronization. The time warp protocol is an
example of an optimistic synchronization mechanism.
Messages sent by an optimistic federate that could later be
canceled are referred to as optimistic messages.

owned attribute An object attribute that is explicitly modeled by the owning
federate. A federate that owns an attribute has the unique
responsibility to provide values for that attribute to the
federation, through the runtime infrastructure, as they are
produced.

protocol catalog The protocol catalog is envisioned as an on-line database that
will contain standard definitions and formats of data exchanged
between distributed simulations. This will help achieve a
particular "collective" functionality distributed among multiple
federates (e.g., air defense, logistics, etc.). During federation
design, this repository is accessed (via automated browsing
tools) to identify individual interactions for which a federate
will be required, thus helping to define the federation design.
The database will be accessible via the World Wide Web.
Copies of the protocol catalog can be made and extended by
government agencies as necessary to cover classified data. An
official unclassified copy will be maintained by the distributed
interactive simulation standards workshop.

real time The actual time in which a physical process occurs.

real-time simulation Same as constrained simulation.

48

reflected attribute An object attribute that is represented but not explicitly modeled
in a federate. The reflecting federate accepts new values of the
reflected attribute as they are produced by some other federation
member and provided to it by the runtime infrastructure.

retraction An action performed by a federate to unschedule a previously
scheduled event. Event retraction is visible to the federate.
Unlike “cancellation” that is only relevant to optimistic
federates such as time warp, “retraction” is a facility provided to
the federate. Retraction is widely used in classical event
oriented discrete event simulations to model behaviors such as
preemption and interrupts.

runtime infrastructure
initialization data (RID)

The data required by the runtime infrastructure for operation.
The required data come from two distinct sources, the federation
object model product, and the federation required execution
details.

runtime infrastructure (RTI) The general purpose distributed operating system software,
which provides the common interface services during the
runtime of a high level architecture federation.

scaled wall-clock time A quantity derived from a wall-clock time defined as offset
+[rate*(wall-clock time - time of last exercise start or restart)].
All scaled wall-clock time values represent points on the
federation time axis. If the "rate" factor is k, scaled wall-clock
time advances at a rate that is k time faster than wall-clock time.

49

scenario development In this phase, the federation developer(s) formulate a scenario
whose execution and subsequent evaluation will lead toward
achieving the study objectives set forth by the federation
sponsor. The scenario provides an identification of the major
entities that must be represented by the federation, a conceptual
description of the capabilities, behavior, and relationships
(interactions) between these major entities over time, and a
specification of relevant environmental conditions (e.g., terrain,
atmospherics, etc.). Initial and termination conditions are also
provided.
The style and format of the scenario documentation (e.g.,
graphics, tables, text) are entirely at the discretion of the
federation developer. However, communities of use may wish
to establish scenario documentation standards among
themselves to facilitate reuse of scenario components.
The output of this phase is a functional-level scenario
description, which is provided as input to the conceptual
analysis phase. Certain key activities during conceptual analysis
may also drive reiterations of the scenario development phase.

scheduling an event Invocation of a primitive (update attribute values, send
interaction, instantiate object, or delete object) by a federate to
notify the runtime infrastructure (RTI) of the occurrence of an
event. Scheduling an event normally results in the RTI sending
messages to other federates to notify them of the occurrence of
the event.

simulation A method for implementing a model over time. Also, a
technique for testing, analysis, or training in which real-world
systems are used, or where real-world and conceptual systems
are reproduced by a model. [DoD 5000.59]

simulation object model
(SOM)

A specification of the intrinsic capabilities that an individual
simulation offers to federations. The standard format in which
simulation object models are expressed provides a means for
federation developers to quickly determine the suitability of
simulation systems to assume specific roles within a federation.

50

time The measurable aspect of duration. Time makes use of scales
based upon the occurrence of periodic events. These are the
day, depending on the rotation of the earth; the month,
depending on the revolution of the moon around the earth; and
the year, depending upon the revolution of the earth around the
sun. Time is expressed as a length on a duration scale measured
from an index on that scale. For example: 4 p.m. local mean
solar time means that 4 mean solar hours have elapsed since the
mean sun was on the meridian of the observer.

time flow mechanism The approach used locally by an individual federate to perform
time advancement. Commonly used time flow mechanisms
include event driven (or event stepped), time driven, and
independent time advance (real-time synchronization)
mechanisms.

time management A collection of mechanisms and services to control the
advancement of time within each federate during an execution
in a way that is consistent with federation requirements for
message ordering and delivery.

time stamp (of an event) A value representing a point on the federation time axis that is
assigned to an event to indicate when that event is said to occur.
Certain message ordering services are based on this time stamp
value. In constrained simulations, the time stamp may be
viewed as a deadline indicating the latest time at which the
message notifying the federate of the event may be processed.

time stamp order (TSO) A total ordering of messages based on the “temporally happens
before” (→t) relationship. A message delivery service is said to
be time stamp ordered if for any two messages M1 and M2

(containing notifications of events E1 and E2, respectively) that
are delivered to a single federate where E1 →t E2, then M1 is
delivered to the federate before M2. The runtime infrastructure
(RTI) ensures that any two time stamp order messages will be
delivered to all federates receiving both messages in the same
relative order. To ensure this, the RTI uses a consistent tie-
breaking mechanism to ensure that all federates perceive the
same ordering of events containing the same time stamp.
Further, the tie-breaking mechanism is deterministic, meaning
repeated executions of the federation will yield the same relative
ordering of these events if the same initial conditions and inputs
are used, and all messages are transmitted using time stamp
ordering.

51

transportation service A runtime infrastructure provided service for transmitting
messages between federates. Different categories of service are
defined with different characteristics regarding reliability of
delivery and message ordering.

true global time A federation-standard representation of time synchronized to
Greenwich mean time or universal time [coordinated] (as
defined in this glossary) with or without some offset (positive or
negative) applied.

unconstrained simulation A simulation where there is no explicit relationship between
wall-clock time and the rate of time advancements. These are
sometimes called “as-fast-as-possible” simulations, and these
two terms are used synonymously here. Analytic simulation
models and many constructive “war game” simulations are often
unconstrained simulations.

universal time [coordinated]
(UTC)

The same as Greenwich mean time. A nonuniform time based
on the rotation of the earth, which is not constant. Usually
spoken as coordinated universal time.

wall-clock time A federate's measurement of true global time, where the
measurement is typically output from a hardware clock. The
error in this measurement can be expressed as an algebraic
residual between wall-clock time and true global time or as an
amount of estimation uncertainty associated with the wall-clock
time measurement software and the hardware clock errors.

52

53

Appendix B - DoD HLA Directive

Under Secretary of Defense
(Acquisition and Technology)

Sept. 10, 1996

MEMORANDUM FOR: SECRETARIES OF THE MILITARY DEPARTMENTS
CHAIRMAN OF THE JOINT CHIEFS OF STAFF
UNDER SECRETARIES OF DEFENSE
ASSISTANT SECRETARIES OF DEFENSE
GENERAL COUNCIL OF THE DEPARTMENT OF DEFENSE
INSPECTOR GENERAL OF THE DEPARTMENT OF DEFENSE
DIRECTOR, OPERATIONAL TEST AND EVALUATION
ASSISTANTS TO THE SECRETARY OF DEFENSE
DIRECTOR OF ADMINISTRATION AND MANAGEMENT
DIRECTORS OF THE DEFENSE AGENCIES

SUBJECT: DoD High Level Architecture (HLA) for Simulations

 References: DoD Directive 5000.59, "DoD Modeling and Simulation (M&S)
Management," January 4, 1994
DoD 5000.59-P, "DoD Modeling and Simulation Master Plan
(MSMP)," October 1995

Under the authority of reference (a), and as prescribed by reference (b), I designate the High
Level Architecture as the standard technical architecture for all DoD simulations.

The baseline HLA is defined by three inter-related elements: HLA Rules Version 1.0 (v.1.0),
HLA Interface Specification v.1.0, and HLA Object Model Template v.1.0. The evolution of the
HLA will be managed by the DoD Executive Council for Modeling and Simulation (EXCIMS)
through its Architecture Management Group (AMG). This structure provides a means for the
DoD Components to identify and address any emergent issues in subsequent refinements to the
HLA. Compliance with the HLA does not mandate the use of any particular implementation of
supporting software such as the Runtime Infrastructure.

DoD Components shall review all of their simulation projects and programs by the second
quarter fiscal year (FY) 1997 in order to establish plans for near-term compliance with the HLA.
The Department shall cease further development or modification of all simulations which have
not achieved, or are not in the process of achieving, HLA-compliance by the first day of FY
1999, and shall retire any non-compliant simulations by the first day of FY 2001. EXCIMS is to
monitor progress and advise me if any emergent events affect their viability.

54

To monitor compliance with the HLA, the DoD Components shall submit an initial report to the
Defense Modeling and Simulation Office (DMSO) by June 30, 1997, which summarizes their
HLA-compliance intentions for each simulation the Component owns or sponsors, organized into
three categories:

• HLA-compliance actions initiated immediately
• HLA-compliance actions initiated at a specified future date
• no HLA compliance planned (thus requiring eventual retirement or a waiver)
•

The DoD Components shall submit periodic updates to these initial reports as required to ensure
their accuracy and completeness. DMSO shall establish a mechanism to provide for formal
certification of compliance and shall provide me with periodic reports on the Department's
progress towards compliance with the HLA.

If a Component believes it is impractical for a simulation to comply with the HLA, or that HLA-
compliance cannot be achieved in a timely manner, it may submit a waiver request to the
Director of Defense Research and Engineering, the Chair of the EXCIMS. In consultation with
the EXCIMS and its Training, Analysis, and Acquisition Councils, I will then decide if an
exception to the HLA-compliance requirement is warranted, and if so, the form of that exception.

This mandate for HLA-compliance supersedes all previous requirements for DoD simulations to
comply with other simulation standards such as Distributed Interactive Simulation or Aggregate-
Level Simulation Protocol. It is expected that new industry standards to support the HLA will
emerge. In consultation with the EXCIMS and its AMG, I will evaluate the suitability of such
standards for the Department as they are established.

The DoD point of contact for the HLA is the Defense Modeling and Simulation Office at (703)
998-0660 or hla@dmso.mil. The HLA documents are available at http://www.dmso.mil/.

\original signed\
Paul G. Kaminski

55

Appendix C – Acronyms and Definitions

A/C aircraft
ACETEF Air Combat Environment Test and Evaluation Facility, Patuxent River,

Maryland; Navy facility
ADRS Automated Data Reduction Software
ADS advanced distributed simulation
AFEWES Air Force Electronic Warfare Evaluation Simulator, Fort Worth, Texas
AFOTEC Air Force Operational Test and Evaluation Center, Kirtland Air Force Base,

New Mexico
ALSP aggregate level simulation protocol
ANIU air network interface unit
API application program interface
ARPA Advanced Research Projects Agency
C4ISR command, control, communications, computers, intelligence, surveillance

and reconnaissance
CMMS conceptual model of the mission space
CORBA Common Object Request Broker Architecture
CPU central processing unit
DDM data distribution management
DIS distributed interactive simulation
DMSO Defense Modeling and Simulation Organization, Alexandria, Virginia
DoD Department of Defense
DSM digital system model
DT&E developmental test and evaluation
ENV environment
ESPDU entity state protocol data unit
ETE JADS End-to-End Test
EW electronic warfare; JADS Electronic Warfare Test
FED federation execution data
FEDEP federation development and execution process
FEPW Federation Execution Planner’s Workbook
FOM federation object model
FRED federation required execution details
GMT Greenwich mean time
GNIU ground network interface unit
GPS global positioning system
GSM ground station module
HITL hardware-in-the-loop
HLA high level architecture
Hz hertz
I/F interface
IADS Integrated Air Defense System
ICD interface control document

56

ID identification
IEEE Institute of Electrical and Electronics Engineers
IP initial point; Internet protocol
IRIG Inter-Range Instrumentation Group
IRIX operating system for the Silicon Graphics, Inc.
JADS Joint Advanced Distributed Simulation, Albuquerque, New Mexico
JETS JammEr Techniques Simulator
Joint STARS Joint Surveillance Target Attack Radar System
JT&E joint test and evaluation
JTC jammer technique command
JTF joint test force
km kilometer
LAN local area network
LBTS lower bound on the time stamp
LGSM light ground station module
LHC link health check
LRC local runtime infrastructure component
M&S modeling and simulation
ms milliseconds
NIU network interface unit
OAR open air range
OFP operational flight program
OM object model
OMDT object model development tool
OML object model library
OMT object model template
OSD Office of the Secretary of Defense
OT&E operational test and evaluation
PC personal computer
PDU protocol data unit
Pent pentium
RD&E research, development, and engineering
RELDISTR reliable distributor
RF radio frequency
RFENV radio frequency environment
RID RTI initialization data
RPR real-time platform reference
RTC reference test condition
RTI runtime infrastructure
RTIexec runtime infrastructure executive
RTU receiver track update
SATCOM satellite communication
SBIR small business innovative research
sec second
SGI Silicon Graphics, Inc.

57

SIMNET simulator network
SISO Simulation Interoperability Standards Organization
SIT JADS System Integration Test
SOM simulation object model
SPJ self-protection jammer
SUT system under test
T&E test and evaluation
T-1 digital carrier used to transmit a formatted digital signal at 1.544 megabits

per second
TAMS Tactical Air Mission Simulator
TCAC test control and analysis center
TCF test control federate
TCP transmission control protocol
TSO time stamp ordered
TSPI time-space-position information
TTL time to live
UDP user datagram protocol
UTC universal time (coordinated)
VSTARS virtual surveillance target attack radar system
VV&A verification, validation and accreditation
WAN wide area network

	HLA special1.pdf
	Executive Summary
	1.0 Purpose
	2.0 High Level Architecture
	2.1 HLA Overview
	2.2 Implications of HLA

	3.0 JADS Overview
	4.0 JADS EW Test
	4.1 EW Test Description
	4.2 EW Test Requirements
	4.3 Network and Hardware Description
	
	
	Figure 1. JADS EW Test Phase 2 Test Architecture and Federates

	4.4 JADS EW Test Federation
	
	
	
	Table 1. Maximum Publish Rates by Federate

	5.0 RTI Performance Tests
	5.1 Pre-Phase 2 Test Objective
	5.2 Test Software
	5.3 One-Way Test
	5.3.1 Description
	5.3.2 One-Way Test Results
	
	
	Table 2. RTI Best Effort Performance in One-Way Tests
	Table 3. RTI Reliable Performance in One-Way Tests
	Table 4. RTI 1.3r5 Reliable Maximum Latency

	5.4 Multiple Federate Test
	5.4.1 Description
	5.4.2 Multiple Federate Test Results
	
	
	Table 5. Multiple Federate Test Results

	6.0 RTI Performance During the JADS EW Test
	
	
	
	
	Table 6. EW Test RTI Performance

	7.0 Technical Lessons Learned
	7.1 No Plug-and-Play for High Performance Federations
	7.2 Data Packet Size
	7.3 Network Architecture
	7.4 TCP Implementation
	7.5 Single Processor Computers
	
	
	
	Table 7. Time Slice Comparison

	7.6 Process Sleep
	7.7 Data Collection
	
	
	Figure 2. RTI Interface Logger

	8.0 Runtime Infrastructure
	8.1 Tick
	
	
	
	Table 8. Tick Comparison

	8.2 Attribute/Interaction Structures
	8.3 Reliable Data and Network Bandwidth
	8.4 Multicast Groups
	8.5 RTI.rid File Parameters
	8.6 Federate Join, Publish, and Resign

	9.0 Anomalies from Previous RTI Versions
	9.1 Reliable Message Buffering
	
	
	Figure 3. Latency 101 Bytes at 20 Hz

	9.2 Multicast Time To Live
	9.3 Excessive Best Effort Data Loss

	10.0 Unexplained Anomalies
	10.1 Best Effort High Latency
	10.2 Latency Spikes
	
	
	Figure 4. RTI 1.3r5 Reliable Latency Spike Publishing 101 Bytes at 400 Hz

	10.3 Differential Latency
	10.4 Reliable Data Loss

	11.0 HLA Application to Other Types of T&E
	11.1 HLA Application to the End-to-End Test and Legacy Simulations
	11.1.1 RTI Object Declaration Tests
	
	
	Table 9. Object Declaration Test Results

	11.2 HLA Application to the System Integration Test
	11.3 General Utility of HLA to T&E

	12.0 T&E HLA Requirements
	12.1 HLA Rules
	12.2 HLA Interface Specification
	12.3 RTI Services
	
	
	
	Table 10. RTI Services Used by JADS Federates

	12.4 RTI Performance
	12.5 HLA Support Tools
	12.5.1 Object Model Development Tool
	12.5.2 Federation Execution Planner's Workbook
	12.5.3 RTI Initialization Data Editor

	12.6 Verification and Validation

	13.0 Summary
	Appendix A - HLA Terms
	Appendix B	 - DoD HLA Directive
	Appendix C – Acronyms and Definitions

